Exit Problems for Reflected Markov-Modulated Brownian Motion

Let ( X , J ) denote a Markov-modulated Brownian motion (MMBM) and denote its supremum process by S . For some a > 0, let σ( a ) denote the time when the reflected process Y := S - X first surpasses the level a . Furthermore, let σ − ( a ) denote the last time before σ( a ) when X attains its cur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2012-09, Vol.49 (3), p.697-709
1. Verfasser: Breuer, Lothar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ( X , J ) denote a Markov-modulated Brownian motion (MMBM) and denote its supremum process by S . For some a > 0, let σ( a ) denote the time when the reflected process Y := S - X first surpasses the level a . Furthermore, let σ − ( a ) denote the last time before σ( a ) when X attains its current supremum. In this paper we shall derive the joint distribution of S σ( a ) , σ − ( a ), and σ( a ), where the latter two will be given in terms of their Laplace transforms. We also provide some remarks on scale matrices for MMBMs with strictly positive variation parameters. This extends recent results for spectrally negative Lévy processes to MMBMs. Due to well-known fluid embedding and state-dependent killing techniques, the analysis applies to Markov additive processes with phase-type jumps as well. The result is of interest to applications such as the dividend problem in insurance mathematics and the buffer overflow problem in queueing theory. Examples will be given for the former.
ISSN:0021-9002
1475-6072
DOI:10.1017/S0021900200009475