Nonhomogeneous random walks systems on ℤ

We consider a random walks system on ℤ in which each active particle performs a nearest-neighbor random walk and activates all inactive particles it encounters. The movement of an active particle stops when it reaches a certain number of jumps without activating any particle. We prove that if the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2010-06, Vol.47 (2), p.562-571
Hauptverfasser: Lebensztayn, Elcio, Machado, Fábio Prates, Zuluaga Martinez, Mauricio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 571
container_issue 2
container_start_page 562
container_title Journal of applied probability
container_volume 47
creator Lebensztayn, Elcio
Machado, Fábio Prates
Zuluaga Martinez, Mauricio
description We consider a random walks system on ℤ in which each active particle performs a nearest-neighbor random walk and activates all inactive particles it encounters. The movement of an active particle stops when it reaches a certain number of jumps without activating any particle. We prove that if the process relies on efficient particles (i.e. those particles with a small probability of jumping to the left) being placed strategically on ℤ, then it might survive, having active particles at any time with positive probability. On the other hand, we may construct a process that dies out eventually almost surely, even if it relies on efficient particles. That is, we discuss what happens if particles are initially placed very far away from each other or if their probability of jumping to the right tends to 1 but not fast enough.
doi_str_mv 10.1017/S0021900200006811
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0021900200006811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0021900200006811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c851-95b3e8cc6e213a01e613bcf151ecfbe9a811367a2c273977d672d28410ee09a23</originalsourceid><addsrcrecordid>eNplTztOxDAUtBBIhIUD0LlGCrxnx3ZcohU_aQUF20eO88JvEyM_ENqeo3AyTkIi6JhiphhpPkIcI5wioDu7B1DoJ4IJtkbcEQVWzpQWnNoVxWyXs78vDpifAbAy3hXi5DaNj2lIDzRSemeZw9ilQX6EzQtL3vIbDSzTKL8_vw7FXh82TEd_uhDry4v18rpc3V3dLM9XZazN1GFaTXWMlhTqAEgWdRt7NEixb8mHaZu2LqionPbOddapTtUVAhH4oPRC4G9szIk5U9-85qch5G2D0Mxfm39f9Q_XjEZP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonhomogeneous random walks systems on ℤ</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Cambridge University Press Journals Complete</source><creator>Lebensztayn, Elcio ; Machado, Fábio Prates ; Zuluaga Martinez, Mauricio</creator><creatorcontrib>Lebensztayn, Elcio ; Machado, Fábio Prates ; Zuluaga Martinez, Mauricio</creatorcontrib><description>We consider a random walks system on ℤ in which each active particle performs a nearest-neighbor random walk and activates all inactive particles it encounters. The movement of an active particle stops when it reaches a certain number of jumps without activating any particle. We prove that if the process relies on efficient particles (i.e. those particles with a small probability of jumping to the left) being placed strategically on ℤ, then it might survive, having active particles at any time with positive probability. On the other hand, we may construct a process that dies out eventually almost surely, even if it relies on efficient particles. That is, we discuss what happens if particles are initially placed very far away from each other or if their probability of jumping to the right tends to 1 but not fast enough.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/S0021900200006811</identifier><language>eng</language><ispartof>Journal of applied probability, 2010-06, Vol.47 (2), p.562-571</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c851-95b3e8cc6e213a01e613bcf151ecfbe9a811367a2c273977d672d28410ee09a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Lebensztayn, Elcio</creatorcontrib><creatorcontrib>Machado, Fábio Prates</creatorcontrib><creatorcontrib>Zuluaga Martinez, Mauricio</creatorcontrib><title>Nonhomogeneous random walks systems on ℤ</title><title>Journal of applied probability</title><description>We consider a random walks system on ℤ in which each active particle performs a nearest-neighbor random walk and activates all inactive particles it encounters. The movement of an active particle stops when it reaches a certain number of jumps without activating any particle. We prove that if the process relies on efficient particles (i.e. those particles with a small probability of jumping to the left) being placed strategically on ℤ, then it might survive, having active particles at any time with positive probability. On the other hand, we may construct a process that dies out eventually almost surely, even if it relies on efficient particles. That is, we discuss what happens if particles are initially placed very far away from each other or if their probability of jumping to the right tends to 1 but not fast enough.</description><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNplTztOxDAUtBBIhIUD0LlGCrxnx3ZcohU_aQUF20eO88JvEyM_ENqeo3AyTkIi6JhiphhpPkIcI5wioDu7B1DoJ4IJtkbcEQVWzpQWnNoVxWyXs78vDpifAbAy3hXi5DaNj2lIDzRSemeZw9ilQX6EzQtL3vIbDSzTKL8_vw7FXh82TEd_uhDry4v18rpc3V3dLM9XZazN1GFaTXWMlhTqAEgWdRt7NEixb8mHaZu2LqionPbOddapTtUVAhH4oPRC4G9szIk5U9-85qch5G2D0Mxfm39f9Q_XjEZP</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Lebensztayn, Elcio</creator><creator>Machado, Fábio Prates</creator><creator>Zuluaga Martinez, Mauricio</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201006</creationdate><title>Nonhomogeneous random walks systems on ℤ</title><author>Lebensztayn, Elcio ; Machado, Fábio Prates ; Zuluaga Martinez, Mauricio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c851-95b3e8cc6e213a01e613bcf151ecfbe9a811367a2c273977d672d28410ee09a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lebensztayn, Elcio</creatorcontrib><creatorcontrib>Machado, Fábio Prates</creatorcontrib><creatorcontrib>Zuluaga Martinez, Mauricio</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lebensztayn, Elcio</au><au>Machado, Fábio Prates</au><au>Zuluaga Martinez, Mauricio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonhomogeneous random walks systems on ℤ</atitle><jtitle>Journal of applied probability</jtitle><date>2010-06</date><risdate>2010</risdate><volume>47</volume><issue>2</issue><spage>562</spage><epage>571</epage><pages>562-571</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>We consider a random walks system on ℤ in which each active particle performs a nearest-neighbor random walk and activates all inactive particles it encounters. The movement of an active particle stops when it reaches a certain number of jumps without activating any particle. We prove that if the process relies on efficient particles (i.e. those particles with a small probability of jumping to the left) being placed strategically on ℤ, then it might survive, having active particles at any time with positive probability. On the other hand, we may construct a process that dies out eventually almost surely, even if it relies on efficient particles. That is, we discuss what happens if particles are initially placed very far away from each other or if their probability of jumping to the right tends to 1 but not fast enough.</abstract><doi>10.1017/S0021900200006811</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 2010-06, Vol.47 (2), p.562-571
issn 0021-9002
1475-6072
language eng
recordid cdi_crossref_primary_10_1017_S0021900200006811
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; Cambridge University Press Journals Complete
title Nonhomogeneous random walks systems on ℤ
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonhomogeneous%20random%20walks%20systems%20on%20%E2%84%A4&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Lebensztayn,%20Elcio&rft.date=2010-06&rft.volume=47&rft.issue=2&rft.spage=562&rft.epage=571&rft.pages=562-571&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/S0021900200006811&rft_dat=%3Ccrossref%3E10_1017_S0021900200006811%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true