Nonhomogeneous random walks systems on ℤ
We consider a random walks system on ℤ in which each active particle performs a nearest-neighbor random walk and activates all inactive particles it encounters. The movement of an active particle stops when it reaches a certain number of jumps without activating any particle. We prove that if the pr...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 2010-06, Vol.47 (2), p.562-571 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 571 |
---|---|
container_issue | 2 |
container_start_page | 562 |
container_title | Journal of applied probability |
container_volume | 47 |
creator | Lebensztayn, Elcio Machado, Fábio Prates Zuluaga Martinez, Mauricio |
description | We consider a random walks system on ℤ in which each active particle performs a nearest-neighbor random walk and activates all inactive particles it encounters. The movement of an active particle stops when it reaches a certain number of jumps without activating any particle. We prove that if the process relies on efficient particles (i.e. those particles with a small probability of jumping to the left) being placed strategically on ℤ, then it might survive, having active particles at any time with positive probability. On the other hand, we may construct a process that dies out eventually almost surely, even if it relies on efficient particles. That is, we discuss what happens if particles are initially placed very far away from each other or if their probability of jumping to the right tends to 1 but not fast enough. |
doi_str_mv | 10.1017/S0021900200006811 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0021900200006811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0021900200006811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c851-95b3e8cc6e213a01e613bcf151ecfbe9a811367a2c273977d672d28410ee09a23</originalsourceid><addsrcrecordid>eNplTztOxDAUtBBIhIUD0LlGCrxnx3ZcohU_aQUF20eO88JvEyM_ENqeo3AyTkIi6JhiphhpPkIcI5wioDu7B1DoJ4IJtkbcEQVWzpQWnNoVxWyXs78vDpifAbAy3hXi5DaNj2lIDzRSemeZw9ilQX6EzQtL3vIbDSzTKL8_vw7FXh82TEd_uhDry4v18rpc3V3dLM9XZazN1GFaTXWMlhTqAEgWdRt7NEixb8mHaZu2LqionPbOddapTtUVAhH4oPRC4G9szIk5U9-85qch5G2D0Mxfm39f9Q_XjEZP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonhomogeneous random walks systems on ℤ</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Cambridge University Press Journals Complete</source><creator>Lebensztayn, Elcio ; Machado, Fábio Prates ; Zuluaga Martinez, Mauricio</creator><creatorcontrib>Lebensztayn, Elcio ; Machado, Fábio Prates ; Zuluaga Martinez, Mauricio</creatorcontrib><description>We consider a random walks system on ℤ in which each active particle performs a nearest-neighbor random walk and activates all inactive particles it encounters. The movement of an active particle stops when it reaches a certain number of jumps without activating any particle. We prove that if the process relies on efficient particles (i.e. those particles with a small probability of jumping to the left) being placed strategically on ℤ, then it might survive, having active particles at any time with positive probability. On the other hand, we may construct a process that dies out eventually almost surely, even if it relies on efficient particles. That is, we discuss what happens if particles are initially placed very far away from each other or if their probability of jumping to the right tends to 1 but not fast enough.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/S0021900200006811</identifier><language>eng</language><ispartof>Journal of applied probability, 2010-06, Vol.47 (2), p.562-571</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c851-95b3e8cc6e213a01e613bcf151ecfbe9a811367a2c273977d672d28410ee09a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Lebensztayn, Elcio</creatorcontrib><creatorcontrib>Machado, Fábio Prates</creatorcontrib><creatorcontrib>Zuluaga Martinez, Mauricio</creatorcontrib><title>Nonhomogeneous random walks systems on ℤ</title><title>Journal of applied probability</title><description>We consider a random walks system on ℤ in which each active particle performs a nearest-neighbor random walk and activates all inactive particles it encounters. The movement of an active particle stops when it reaches a certain number of jumps without activating any particle. We prove that if the process relies on efficient particles (i.e. those particles with a small probability of jumping to the left) being placed strategically on ℤ, then it might survive, having active particles at any time with positive probability. On the other hand, we may construct a process that dies out eventually almost surely, even if it relies on efficient particles. That is, we discuss what happens if particles are initially placed very far away from each other or if their probability of jumping to the right tends to 1 but not fast enough.</description><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNplTztOxDAUtBBIhIUD0LlGCrxnx3ZcohU_aQUF20eO88JvEyM_ENqeo3AyTkIi6JhiphhpPkIcI5wioDu7B1DoJ4IJtkbcEQVWzpQWnNoVxWyXs78vDpifAbAy3hXi5DaNj2lIDzRSemeZw9ilQX6EzQtL3vIbDSzTKL8_vw7FXh82TEd_uhDry4v18rpc3V3dLM9XZazN1GFaTXWMlhTqAEgWdRt7NEixb8mHaZu2LqionPbOddapTtUVAhH4oPRC4G9szIk5U9-85qch5G2D0Mxfm39f9Q_XjEZP</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Lebensztayn, Elcio</creator><creator>Machado, Fábio Prates</creator><creator>Zuluaga Martinez, Mauricio</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201006</creationdate><title>Nonhomogeneous random walks systems on ℤ</title><author>Lebensztayn, Elcio ; Machado, Fábio Prates ; Zuluaga Martinez, Mauricio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c851-95b3e8cc6e213a01e613bcf151ecfbe9a811367a2c273977d672d28410ee09a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lebensztayn, Elcio</creatorcontrib><creatorcontrib>Machado, Fábio Prates</creatorcontrib><creatorcontrib>Zuluaga Martinez, Mauricio</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lebensztayn, Elcio</au><au>Machado, Fábio Prates</au><au>Zuluaga Martinez, Mauricio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonhomogeneous random walks systems on ℤ</atitle><jtitle>Journal of applied probability</jtitle><date>2010-06</date><risdate>2010</risdate><volume>47</volume><issue>2</issue><spage>562</spage><epage>571</epage><pages>562-571</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>We consider a random walks system on ℤ in which each active particle performs a nearest-neighbor random walk and activates all inactive particles it encounters. The movement of an active particle stops when it reaches a certain number of jumps without activating any particle. We prove that if the process relies on efficient particles (i.e. those particles with a small probability of jumping to the left) being placed strategically on ℤ, then it might survive, having active particles at any time with positive probability. On the other hand, we may construct a process that dies out eventually almost surely, even if it relies on efficient particles. That is, we discuss what happens if particles are initially placed very far away from each other or if their probability of jumping to the right tends to 1 but not fast enough.</abstract><doi>10.1017/S0021900200006811</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9002 |
ispartof | Journal of applied probability, 2010-06, Vol.47 (2), p.562-571 |
issn | 0021-9002 1475-6072 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S0021900200006811 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy; Cambridge University Press Journals Complete |
title | Nonhomogeneous random walks systems on ℤ |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonhomogeneous%20random%20walks%20systems%20on%20%E2%84%A4&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Lebensztayn,%20Elcio&rft.date=2010-06&rft.volume=47&rft.issue=2&rft.spage=562&rft.epage=571&rft.pages=562-571&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/S0021900200006811&rft_dat=%3Ccrossref%3E10_1017_S0021900200006811%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |