YANG–BAXTER MAPS AND THE DISCRETE KP HIERARCHY

We present a systematic construction of the discrete KP hierarchy in terms of Sato–Wilson-type shift operators. Reductions of the equations in this hierarchy to 1+1-dimensional integrable lattice systems are considered, and the problems that arise with regard to the symmetry algebra underlying the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 2009-02, Vol.51 (A), p.107-119
Hauptverfasser: KAKEI, S., NIMMO, J. J. C., WILLOX, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a systematic construction of the discrete KP hierarchy in terms of Sato–Wilson-type shift operators. Reductions of the equations in this hierarchy to 1+1-dimensional integrable lattice systems are considered, and the problems that arise with regard to the symmetry algebra underlying the reduced systems as well as the ultradiscretizability of these systems are discussed. A scheme for constructing ultradiscretizable reductions that give rise to Yang–Baxter maps is explained in two explicit examples.
ISSN:0017-0895
1469-509X
DOI:10.1017/S0017089508004825