A class of maximal orders integral over their centres

In a recent paper [1], Brown, Hajarnavis and MacEacharn have considered non-commutative Noetherian local rings of finite global dimension which are integral over their centres. For such a ring Rthey have shown: (i) R is a prime ring whose Krull and global dimensions coincide; (ii) R = ∩ RP where p r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 1983-07, Vol.24 (2), p.177-180, Article 177
1. Verfasser: Gray, Andy J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue 2
container_start_page 177
container_title Glasgow mathematical journal
container_volume 24
creator Gray, Andy J.
description In a recent paper [1], Brown, Hajarnavis and MacEacharn have considered non-commutative Noetherian local rings of finite global dimension which are integral over their centres. For such a ring Rthey have shown: (i) R is a prime ring whose Krull and global dimensions coincide; (ii) R = ∩ RP where p runs through the set of rank one primes of the centre of R, and each Rp is hereditary; (iii) the centre of R is a Krull domain.
doi_str_mv 10.1017/S0017089500005255
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0017089500005255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0017089500005255</cupid><sourcerecordid>10_1017_S0017089500005255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2155-79e4dfddef6808f62b7dfe426878aa7a9147706c8237d11bc1d07222f0014a353</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIHcPMPBGwn9ibHqoICqsRbcLMcP4pL0iA7oPL3OGrFAaTuYVej3dmZXYROKTmjhML5I0mZlBUnKTjjfA-NaCGqjJPqdR-NhnY29A_RUYzLBPOERohPsG5UjLhzuFVr36oGd8HYELFf9XYRBvxlA-7frA9Y21UfbDxGB0410Z5s6xg9X148Ta-y-e3sejqZZ5pRzjOobGGcMdaJkpROsBqMswUTJZRKgapoAUCELlkOhtJaU0OAMeaSvULlPB8jutmrQxdjsE5-hGQxfEtK5HC3_Hd34sAfjva96n2XnCvf7GRmG6aPvV3_SqnwLgXkwKWY3csbuJvCjL_IhzSfb5VUWwdvFlYuu8-wSh_ZofIDWPF4tQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A class of maximal orders integral over their centres</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Cambridge Journals</source><creator>Gray, Andy J.</creator><creatorcontrib>Gray, Andy J.</creatorcontrib><description>In a recent paper [1], Brown, Hajarnavis and MacEacharn have considered non-commutative Noetherian local rings of finite global dimension which are integral over their centres. For such a ring Rthey have shown: (i) R is a prime ring whose Krull and global dimensions coincide; (ii) R = ∩ RP where p runs through the set of rank one primes of the centre of R, and each Rp is hereditary; (iii) the centre of R is a Krull domain.</description><identifier>ISSN: 0017-0895</identifier><identifier>EISSN: 1469-509X</identifier><identifier>DOI: 10.1017/S0017089500005255</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Glasgow mathematical journal, 1983-07, Vol.24 (2), p.177-180, Article 177</ispartof><rights>Copyright © Glasgow Mathematical Journal Trust 1983</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2155-79e4dfddef6808f62b7dfe426878aa7a9147706c8237d11bc1d07222f0014a353</citedby><cites>FETCH-LOGICAL-c2155-79e4dfddef6808f62b7dfe426878aa7a9147706c8237d11bc1d07222f0014a353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0017089500005255/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Gray, Andy J.</creatorcontrib><title>A class of maximal orders integral over their centres</title><title>Glasgow mathematical journal</title><addtitle>Glasgow Math. J</addtitle><description>In a recent paper [1], Brown, Hajarnavis and MacEacharn have considered non-commutative Noetherian local rings of finite global dimension which are integral over their centres. For such a ring Rthey have shown: (i) R is a prime ring whose Krull and global dimensions coincide; (ii) R = ∩ RP where p runs through the set of rank one primes of the centre of R, and each Rp is hereditary; (iii) the centre of R is a Krull domain.</description><issn>0017-0895</issn><issn>1469-509X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIHcPMPBGwn9ibHqoICqsRbcLMcP4pL0iA7oPL3OGrFAaTuYVej3dmZXYROKTmjhML5I0mZlBUnKTjjfA-NaCGqjJPqdR-NhnY29A_RUYzLBPOERohPsG5UjLhzuFVr36oGd8HYELFf9XYRBvxlA-7frA9Y21UfbDxGB0410Z5s6xg9X148Ta-y-e3sejqZZ5pRzjOobGGcMdaJkpROsBqMswUTJZRKgapoAUCELlkOhtJaU0OAMeaSvULlPB8jutmrQxdjsE5-hGQxfEtK5HC3_Hd34sAfjva96n2XnCvf7GRmG6aPvV3_SqnwLgXkwKWY3csbuJvCjL_IhzSfb5VUWwdvFlYuu8-wSh_ZofIDWPF4tQ</recordid><startdate>198307</startdate><enddate>198307</enddate><creator>Gray, Andy J.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198307</creationdate><title>A class of maximal orders integral over their centres</title><author>Gray, Andy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2155-79e4dfddef6808f62b7dfe426878aa7a9147706c8237d11bc1d07222f0014a353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gray, Andy J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Glasgow mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gray, Andy J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A class of maximal orders integral over their centres</atitle><jtitle>Glasgow mathematical journal</jtitle><addtitle>Glasgow Math. J</addtitle><date>1983-07</date><risdate>1983</risdate><volume>24</volume><issue>2</issue><spage>177</spage><epage>180</epage><pages>177-180</pages><artnum>177</artnum><issn>0017-0895</issn><eissn>1469-509X</eissn><abstract>In a recent paper [1], Brown, Hajarnavis and MacEacharn have considered non-commutative Noetherian local rings of finite global dimension which are integral over their centres. For such a ring Rthey have shown: (i) R is a prime ring whose Krull and global dimensions coincide; (ii) R = ∩ RP where p runs through the set of rank one primes of the centre of R, and each Rp is hereditary; (iii) the centre of R is a Krull domain.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0017089500005255</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-0895
ispartof Glasgow mathematical journal, 1983-07, Vol.24 (2), p.177-180, Article 177
issn 0017-0895
1469-509X
language eng
recordid cdi_crossref_primary_10_1017_S0017089500005255
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Cambridge Journals
title A class of maximal orders integral over their centres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20class%20of%20maximal%20orders%20integral%20over%20their%20centres&rft.jtitle=Glasgow%20mathematical%20journal&rft.au=Gray,%20Andy%20J.&rft.date=1983-07&rft.volume=24&rft.issue=2&rft.spage=177&rft.epage=180&rft.pages=177-180&rft.artnum=177&rft.issn=0017-0895&rft.eissn=1469-509X&rft_id=info:doi/10.1017/S0017089500005255&rft_dat=%3Ccambridge_cross%3E10_1017_S0017089500005255%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0017089500005255&rfr_iscdi=true