A class of maximal orders integral over their centres
In a recent paper [1], Brown, Hajarnavis and MacEacharn have considered non-commutative Noetherian local rings of finite global dimension which are integral over their centres. For such a ring Rthey have shown: (i) R is a prime ring whose Krull and global dimensions coincide; (ii) R = ∩ RP where p r...
Gespeichert in:
Veröffentlicht in: | Glasgow mathematical journal 1983-07, Vol.24 (2), p.177-180, Article 177 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a recent paper [1], Brown, Hajarnavis and MacEacharn have considered non-commutative Noetherian local rings of finite global dimension which are integral over their centres. For such a ring Rthey have shown: (i) R is a prime ring whose Krull and global dimensions coincide; (ii) R = ∩ RP where p runs through the set of rank one primes of the centre of R, and each Rp is hereditary; (iii) the centre of R is a Krull domain. |
---|---|
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S0017089500005255 |