A class of maximal orders integral over their centres

In a recent paper [1], Brown, Hajarnavis and MacEacharn have considered non-commutative Noetherian local rings of finite global dimension which are integral over their centres. For such a ring Rthey have shown: (i) R is a prime ring whose Krull and global dimensions coincide; (ii) R = ∩ RP where p r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 1983-07, Vol.24 (2), p.177-180, Article 177
1. Verfasser: Gray, Andy J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a recent paper [1], Brown, Hajarnavis and MacEacharn have considered non-commutative Noetherian local rings of finite global dimension which are integral over their centres. For such a ring Rthey have shown: (i) R is a prime ring whose Krull and global dimensions coincide; (ii) R = ∩ RP where p runs through the set of rank one primes of the centre of R, and each Rp is hereditary; (iii) the centre of R is a Krull domain.
ISSN:0017-0895
1469-509X
DOI:10.1017/S0017089500005255