Solution of Irving's Ramsey problem

In [1] the following question was posed by R. W. Irving (see also Conjecture 4.10 in [4]): Is there an edge 2-colouring of the complete bipartite graph K13,17 with no monochromatic K3,3? We give a negative answer in this note (Theorem 2). Furthermore we prove Conjecture 4.11 (i) of [4] (Theorem 1),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 1980-01, Vol.21 (1), p.187-197
Hauptverfasser: Harborth, Heiko, Nitzschke, Heinz-Michael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 197
container_issue 1
container_start_page 187
container_title Glasgow mathematical journal
container_volume 21
creator Harborth, Heiko
Nitzschke, Heinz-Michael
description In [1] the following question was posed by R. W. Irving (see also Conjecture 4.10 in [4]): Is there an edge 2-colouring of the complete bipartite graph K13,17 with no monochromatic K3,3? We give a negative answer in this note (Theorem 2). Furthermore we prove Conjecture 4.11 (i) of [4] (Theorem 1), that is, any edge 2-coloured K2n+1,4n−3 contains a monochromatic K2,n with the 2 and n vertices a subset of the 2n+1 and 4n−3 vertices, respectively. Theorem 1 is a consequence of Satz 4 in [3], however, we give a direct proof here.
doi_str_mv 10.1017/S0017089500004171
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0017089500004171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0017089500004171</cupid><sourcerecordid>10_1017_S0017089500004171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2371-edf3ac12abe830d3eb489645b7eeaf42f8b0b6735bd1193875f72de1c712a8e63</originalsourceid><addsrcrecordid>eNp9j01Lw0AQhhdRMFZ_gLeAB0_RnWw2mxyl2g8oSq1Sb8tuMltS81F2W7H_3g0tXgTnMMPLzDMvLyHXQO-AgrhfUN9plnPqKwEBJySAJM0jTvOPUxL066jfn5ML59ZeMq8CcrPo6t226tqwM-HUflXt6taFr6pxuA83ttM1NpfkzKja4dVxDsj76OltOIlmL-Pp8GEWFTETEGFpmCogVhozRkuGOsnyNOFaICqTxCbTVKeCcV0C5CwT3Ii4RCiEZzJM2YDA4W9hO-csGrmxVaPsXgKVfUr5J6VnogNTuS1-_wLKfkpvJbhMx3O5fB4-0iWby4m_Z0cP1WhblSuU625nW5_rH5cfqiZh2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solution of Irving's Ramsey problem</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Cambridge Journals</source><creator>Harborth, Heiko ; Nitzschke, Heinz-Michael</creator><creatorcontrib>Harborth, Heiko ; Nitzschke, Heinz-Michael</creatorcontrib><description>In [1] the following question was posed by R. W. Irving (see also Conjecture 4.10 in [4]): Is there an edge 2-colouring of the complete bipartite graph K13,17 with no monochromatic K3,3? We give a negative answer in this note (Theorem 2). Furthermore we prove Conjecture 4.11 (i) of [4] (Theorem 1), that is, any edge 2-coloured K2n+1,4n−3 contains a monochromatic K2,n with the 2 and n vertices a subset of the 2n+1 and 4n−3 vertices, respectively. Theorem 1 is a consequence of Satz 4 in [3], however, we give a direct proof here.</description><identifier>ISSN: 0017-0895</identifier><identifier>EISSN: 1469-509X</identifier><identifier>DOI: 10.1017/S0017089500004171</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Glasgow mathematical journal, 1980-01, Vol.21 (1), p.187-197</ispartof><rights>Copyright © Glasgow Mathematical Journal Trust 1980</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2371-edf3ac12abe830d3eb489645b7eeaf42f8b0b6735bd1193875f72de1c712a8e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0017089500004171/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Harborth, Heiko</creatorcontrib><creatorcontrib>Nitzschke, Heinz-Michael</creatorcontrib><title>Solution of Irving's Ramsey problem</title><title>Glasgow mathematical journal</title><addtitle>Glasgow Math. J</addtitle><description>In [1] the following question was posed by R. W. Irving (see also Conjecture 4.10 in [4]): Is there an edge 2-colouring of the complete bipartite graph K13,17 with no monochromatic K3,3? We give a negative answer in this note (Theorem 2). Furthermore we prove Conjecture 4.11 (i) of [4] (Theorem 1), that is, any edge 2-coloured K2n+1,4n−3 contains a monochromatic K2,n with the 2 and n vertices a subset of the 2n+1 and 4n−3 vertices, respectively. Theorem 1 is a consequence of Satz 4 in [3], however, we give a direct proof here.</description><issn>0017-0895</issn><issn>1469-509X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNp9j01Lw0AQhhdRMFZ_gLeAB0_RnWw2mxyl2g8oSq1Sb8tuMltS81F2W7H_3g0tXgTnMMPLzDMvLyHXQO-AgrhfUN9plnPqKwEBJySAJM0jTvOPUxL066jfn5ML59ZeMq8CcrPo6t226tqwM-HUflXt6taFr6pxuA83ttM1NpfkzKja4dVxDsj76OltOIlmL-Pp8GEWFTETEGFpmCogVhozRkuGOsnyNOFaICqTxCbTVKeCcV0C5CwT3Ii4RCiEZzJM2YDA4W9hO-csGrmxVaPsXgKVfUr5J6VnogNTuS1-_wLKfkpvJbhMx3O5fB4-0iWby4m_Z0cP1WhblSuU625nW5_rH5cfqiZh2Q</recordid><startdate>198001</startdate><enddate>198001</enddate><creator>Harborth, Heiko</creator><creator>Nitzschke, Heinz-Michael</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198001</creationdate><title>Solution of Irving's Ramsey problem</title><author>Harborth, Heiko ; Nitzschke, Heinz-Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2371-edf3ac12abe830d3eb489645b7eeaf42f8b0b6735bd1193875f72de1c712a8e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harborth, Heiko</creatorcontrib><creatorcontrib>Nitzschke, Heinz-Michael</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Glasgow mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harborth, Heiko</au><au>Nitzschke, Heinz-Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution of Irving's Ramsey problem</atitle><jtitle>Glasgow mathematical journal</jtitle><addtitle>Glasgow Math. J</addtitle><date>1980-01</date><risdate>1980</risdate><volume>21</volume><issue>1</issue><spage>187</spage><epage>197</epage><pages>187-197</pages><issn>0017-0895</issn><eissn>1469-509X</eissn><abstract>In [1] the following question was posed by R. W. Irving (see also Conjecture 4.10 in [4]): Is there an edge 2-colouring of the complete bipartite graph K13,17 with no monochromatic K3,3? We give a negative answer in this note (Theorem 2). Furthermore we prove Conjecture 4.11 (i) of [4] (Theorem 1), that is, any edge 2-coloured K2n+1,4n−3 contains a monochromatic K2,n with the 2 and n vertices a subset of the 2n+1 and 4n−3 vertices, respectively. Theorem 1 is a consequence of Satz 4 in [3], however, we give a direct proof here.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0017089500004171</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-0895
ispartof Glasgow mathematical journal, 1980-01, Vol.21 (1), p.187-197
issn 0017-0895
1469-509X
language eng
recordid cdi_crossref_primary_10_1017_S0017089500004171
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Cambridge Journals
title Solution of Irving's Ramsey problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A31%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20of%20Irving's%20Ramsey%20problem&rft.jtitle=Glasgow%20mathematical%20journal&rft.au=Harborth,%20Heiko&rft.date=1980-01&rft.volume=21&rft.issue=1&rft.spage=187&rft.epage=197&rft.pages=187-197&rft.issn=0017-0895&rft.eissn=1469-509X&rft_id=info:doi/10.1017/S0017089500004171&rft_dat=%3Ccambridge_cross%3E10_1017_S0017089500004171%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0017089500004171&rfr_iscdi=true