Solution of Irving's Ramsey problem

In [1] the following question was posed by R. W. Irving (see also Conjecture 4.10 in [4]): Is there an edge 2-colouring of the complete bipartite graph K13,17 with no monochromatic K3,3? We give a negative answer in this note (Theorem 2). Furthermore we prove Conjecture 4.11 (i) of [4] (Theorem 1),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 1980-01, Vol.21 (1), p.187-197
Hauptverfasser: Harborth, Heiko, Nitzschke, Heinz-Michael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In [1] the following question was posed by R. W. Irving (see also Conjecture 4.10 in [4]): Is there an edge 2-colouring of the complete bipartite graph K13,17 with no monochromatic K3,3? We give a negative answer in this note (Theorem 2). Furthermore we prove Conjecture 4.11 (i) of [4] (Theorem 1), that is, any edge 2-coloured K2n+1,4n−3 contains a monochromatic K2,n with the 2 and n vertices a subset of the 2n+1 and 4n−3 vertices, respectively. Theorem 1 is a consequence of Satz 4 in [3], however, we give a direct proof here.
ISSN:0017-0895
1469-509X
DOI:10.1017/S0017089500004171