On products of idempotent matrices
In [1], J. M. Howie considered the semigroup of transformations of sets and proved (Theorem 1) that every transformation of a finite set which is not a permutation can be written as a product of idempotents. In view of the analogy between the theories of transformations of finite sets and linear tra...
Gespeichert in:
Veröffentlicht in: | Glasgow mathematical journal 1967-07, Vol.8 (2), p.118-122 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In [1], J. M. Howie considered the semigroup of transformations of sets and proved (Theorem 1) that every transformation of a finite set which is not a permutation can be written as a product of idempotents. In view of the analogy between the theories of transformations of finite sets and linear transformations of finite dimensional vector spaces, Howie's theorem suggests a corresponding result for matrices. The purpose of this note is to prove such a result. |
---|---|
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S0017089500000173 |