On products of idempotent matrices

In [1], J. M. Howie considered the semigroup of transformations of sets and proved (Theorem 1) that every transformation of a finite set which is not a permutation can be written as a product of idempotents. In view of the analogy between the theories of transformations of finite sets and linear tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 1967-07, Vol.8 (2), p.118-122
1. Verfasser: Erdos, J. A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In [1], J. M. Howie considered the semigroup of transformations of sets and proved (Theorem 1) that every transformation of a finite set which is not a permutation can be written as a product of idempotents. In view of the analogy between the theories of transformations of finite sets and linear transformations of finite dimensional vector spaces, Howie's theorem suggests a corresponding result for matrices. The purpose of this note is to prove such a result.
ISSN:0017-0895
1469-509X
DOI:10.1017/S0017089500000173