RETRACTED – The wigner property for CL-spaces and finite-dimensional polyhedral banach spaces
We say that a map $f$ from a Banach space $X$ to another Banach space $Y$ is a phase-isometry if the equality \[ \{\|f(x)+f(y)\|, \|f(x)-f(y)\|\}=\{\|x+y\|, \|x-y\|\} \] holds for all $x,\,y\in X$ . A Banach space $X$ is said to have the Wigner property if for any Banach space $Y$ and every surjecti...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Edinburgh Mathematical Society 2021-08, Vol.64 (3), p.717-733 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We say that a map
$f$
from a Banach space
$X$
to another Banach space
$Y$
is a phase-isometry if the equality
\[ \{\|f(x)+f(y)\|, \|f(x)-f(y)\|\}=\{\|x+y\|, \|x-y\|\} \]
holds for all
$x,\,y\in X$
. A Banach space
$X$
is said to have the Wigner property if for any Banach space
$Y$
and every surjective phase-isometry
$f : X\rightarrow Y$
, there exists a phase function
$\varepsilon : X \rightarrow \{-1,\,1\}$
such that
$\varepsilon \cdot f$
is a linear isometry. We present some basic properties of phase-isometries between two real Banach spaces. These enable us to show that all finite-dimensional polyhedral Banach spaces and CL-spaces possess the Wigner property. |
---|---|
ISSN: | 0013-0915 1464-3839 |
DOI: | 10.1017/S0013091521000250 |