Gelfand-Kirillov dimension of multi-filtered algebras

We consider associative algebras filtered by the additive monoid ℕp. We prove that, under quite general conditions, the study of Gelfand-Kirillov dimension of modules over a multi-filtered algebra R can be reduced to the associated ℕp-graded algebra G(R). As a consequence, we show the exactness of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Edinburgh Mathematical Society 1999-02, Vol.42 (1), p.155-168
1. Verfasser: Torrecillas, José Gómez
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider associative algebras filtered by the additive monoid ℕp. We prove that, under quite general conditions, the study of Gelfand-Kirillov dimension of modules over a multi-filtered algebra R can be reduced to the associated ℕp-graded algebra G(R). As a consequence, we show the exactness of the Gelfand-Kirillov dimension when the multi-filtration is finite-dimensional and G(R) is a finitely generated noetherian algebra. Our methods apply to examples like iterated Ore extensions with arbitrary derivations and “homothetic” automorphisms (e.g. quantum matrices, quantum Weyl algebras) and the quantum enveloping algebra of sl(v + 1)
ISSN:0013-0915
1464-3839
DOI:10.1017/S0013091500020083