Rigid Artinian rings

In [4], Maxson studied the properties of a ring R whose only ring endomorphisms φ: R → R are the trivial ones, namely the identity map, idR, and the map 0R given by φ(R) = 0. We shall say that any such ring is rigid, slightly extending the definition used in [4] by dropping the restriction that R2 ≠...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Edinburgh Mathematical Society 1982-02, Vol.25 (1), p.97-99
1. Verfasser: McLean, K. R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In [4], Maxson studied the properties of a ring R whose only ring endomorphisms φ: R → R are the trivial ones, namely the identity map, idR, and the map 0R given by φ(R) = 0. We shall say that any such ring is rigid, slightly extending the definition used in [4] by dropping the restriction that R2 ≠ 0. Maxson's most detailed results concerned the structure of rigid artinian rings, and our main aim is to complete this part of his investigation by establishing the following Theorem. Let R(≠0) be a left-artinian ring. Then R is rigid if and only if (i) , the ring of integers modulo a prime power pk, (ii) R ≅ N2, the null ring on a cyclic group of order 2, or (iii) R is a rigid field of characteristic zero.
ISSN:0013-0915
1464-3839
DOI:10.1017/S0013091500004193