DECOMPOSITION OF THE JACOBIAN OF SOME TWISTS OF A GENUS $2$ CURVE
Cardona and Lario [‘Twists of the genus 2 curve $y^2 = x^6+1$ ’, J. Number Theory 209 (2020), 195–211] gave a complete classification of the twists of the curve $y^2 = x^6+1$ . In this paper, we study the twists of the curve whose automorphism group is defined over a biquadratic extension of the rat...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2024-10, p.1-15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cardona and Lario [‘Twists of the genus 2 curve
$y^2 = x^6+1$
’,
J. Number Theory
209
(2020), 195–211] gave a complete classification of the twists of the curve
$y^2 = x^6+1$
. In this paper, we study the twists of the curve whose automorphism group is defined over a biquadratic extension of the rationals. If the twists are of type
B
or
C
in the Cardona–Lario classification, we find a pair of elliptic curves whose product is isogenous with the Jacobian of the twist. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972724000789 |