THE LEAST COMMON MULTIPLE OF CONSECUTIVE TERMS IN A QUADRATIC PROGRESSION
Let k be any given positive integer. We define the arithmetic function gk for any positive integer n by \[ g_{k}(n):=\frac {\prod _{i=0}^k ((n+i)^2+1)}{{\rm lcm}_{0\le i\le k}\{(n+i)^2+1\}}. \] We first show that gk is periodic. Subsequently, we provide a detailed local analysis of the periodic func...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2012-12, Vol.86 (3), p.389-404 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let k be any given positive integer. We define the arithmetic function gk for any positive integer n by \[ g_{k}(n):=\frac {\prod _{i=0}^k ((n+i)^2+1)}{{\rm lcm}_{0\le i\le k}\{(n+i)^2+1\}}. \] We first show that gk is periodic. Subsequently, we provide a detailed local analysis of the periodic function gk, and determine its smallest period. We also obtain an asymptotic formula for log lcm0≤i≤k
{(n+i)2+1}. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972712000202 |