THE LEAST COMMON MULTIPLE OF CONSECUTIVE TERMS IN A QUADRATIC PROGRESSION

Let k be any given positive integer. We define the arithmetic function gk for any positive integer n by \[ g_{k}(n):=\frac {\prod _{i=0}^k ((n+i)^2+1)}{{\rm lcm}_{0\le i\le k}\{(n+i)^2+1\}}. \] We first show that gk is periodic. Subsequently, we provide a detailed local analysis of the periodic func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2012-12, Vol.86 (3), p.389-404
Hauptverfasser: QIAN, GUOYOU, TAN, QIANRONG, HONG, SHAOFANG
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let k be any given positive integer. We define the arithmetic function gk for any positive integer n by \[ g_{k}(n):=\frac {\prod _{i=0}^k ((n+i)^2+1)}{{\rm lcm}_{0\le i\le k}\{(n+i)^2+1\}}. \] We first show that gk is periodic. Subsequently, we provide a detailed local analysis of the periodic function gk, and determine its smallest period. We also obtain an asymptotic formula for log lcm0≤i≤k {(n+i)2+1}.
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972712000202