On some mean value theorems of the differential calculus

A general mean value theorem, for real valued functions, is proved. This mean value theorem contains, as a special case, the result that for any, suitably restricted, function f defined on [a, b], there always exists a number c in (a, b) such that f(c) − f(a) = f′(c)(c−a). A partial converse of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 1971-10, Vol.5 (2), p.227-238
Hauptverfasser: Diaz, J.B., Výborný, R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A general mean value theorem, for real valued functions, is proved. This mean value theorem contains, as a special case, the result that for any, suitably restricted, function f defined on [a, b], there always exists a number c in (a, b) such that f(c) − f(a) = f′(c)(c−a). A partial converse of the general mean value theorem is given. A similar generalized mean value theorem, for vector valued functions, is also established.
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972700047109