On some mean value theorems of the differential calculus
A general mean value theorem, for real valued functions, is proved. This mean value theorem contains, as a special case, the result that for any, suitably restricted, function f defined on [a, b], there always exists a number c in (a, b) such that f(c) − f(a) = f′(c)(c−a). A partial converse of the...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 1971-10, Vol.5 (2), p.227-238 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A general mean value theorem, for real valued functions, is proved. This mean value theorem contains, as a special case, the result that for any, suitably restricted, function f defined on [a, b], there always exists a number c in (a, b) such that f(c) − f(a) = f′(c)(c−a). A partial converse of the general mean value theorem is given. A similar generalized mean value theorem, for vector valued functions, is also established. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972700047109 |