On Lebesgue-type decompositions for Banach algebras

If the maximal ideal space of a commutative complex unitary Banach algebra, X, is equipped with a nonnegative, finite, regular Borel measure, m, then for each element, x, in X, a. complex regular Borel measure, mx, can be obtained by integrating the Gelfand transform of x with respect to m over the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 1970-08, Vol.3 (1), p.39-47
1. Verfasser: Anton, Howard
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue 1
container_start_page 39
container_title Bulletin of the Australian Mathematical Society
container_volume 3
creator Anton, Howard
description If the maximal ideal space of a commutative complex unitary Banach algebra, X, is equipped with a nonnegative, finite, regular Borel measure, m, then for each element, x, in X, a. complex regular Borel measure, mx, can be obtained by integrating the Gelfand transform of x with respect to m over the Borel sets. This paper considers the possibility of direct sum decompositions of the form X = Ax ⊕ Px where Ax = {z ε X: mz ≪ mx} and Px = {z ε X: mz ┴ mx}.
doi_str_mv 10.1017/S0004972700045627
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0004972700045627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972700045627</cupid><sourcerecordid>10_1017_S0004972700045627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2377-2806ec025ce0968db65521c7592eaa6439906faa3b1677e351fb3f10547962f23</originalsourceid><addsrcrecordid>eNp9j19LwzAUxYMoOKcfwLd-gWj-NLntow7dhMIQJz6GNL2pnVs7kg7ct7dlwxfBpwPnnnMPP0JuObvjjMP9G2MszUHAqEoLOCMTDkpRrqU8J5PRpuP9klzFuB5DSmQTIpdtUmCJsd4j7Q87TCp03XbXxaZvujYmvgvJo22t-0zspsYy2HhNLrzdRLw56ZS8Pz-tZgtaLOcvs4eCOiEBqMiYRseEcshynVWlHia5A5ULtFanMs-Z9tbKkmsAlIr7UnrOVAq5Fl7IKeHHvy50MQb0ZhearQ0Hw5kZqc0f6qFDj50m9vj9W7Dhy2iQoIyevxrgMPtg6coshrw8bdhtGZqqRrPu9qEduP5Z-QFCXWYv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Lebesgue-type decompositions for Banach algebras</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge University Press Journals Complete</source><creator>Anton, Howard</creator><creatorcontrib>Anton, Howard</creatorcontrib><description>If the maximal ideal space of a commutative complex unitary Banach algebra, X, is equipped with a nonnegative, finite, regular Borel measure, m, then for each element, x, in X, a. complex regular Borel measure, mx, can be obtained by integrating the Gelfand transform of x with respect to m over the Borel sets. This paper considers the possibility of direct sum decompositions of the form X = Ax ⊕ Px where Ax = {z ε X: mz ≪ mx} and Px = {z ε X: mz ┴ mx}.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972700045627</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Bulletin of the Australian Mathematical Society, 1970-08, Vol.3 (1), p.39-47</ispartof><rights>Copyright © Australian Mathematical Society 1970</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972700045627/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Anton, Howard</creatorcontrib><title>On Lebesgue-type decompositions for Banach algebras</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Austral. Math. Soc</addtitle><description>If the maximal ideal space of a commutative complex unitary Banach algebra, X, is equipped with a nonnegative, finite, regular Borel measure, m, then for each element, x, in X, a. complex regular Borel measure, mx, can be obtained by integrating the Gelfand transform of x with respect to m over the Borel sets. This paper considers the possibility of direct sum decompositions of the form X = Ax ⊕ Px where Ax = {z ε X: mz ≪ mx} and Px = {z ε X: mz ┴ mx}.</description><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1970</creationdate><recordtype>article</recordtype><recordid>eNp9j19LwzAUxYMoOKcfwLd-gWj-NLntow7dhMIQJz6GNL2pnVs7kg7ct7dlwxfBpwPnnnMPP0JuObvjjMP9G2MszUHAqEoLOCMTDkpRrqU8J5PRpuP9klzFuB5DSmQTIpdtUmCJsd4j7Q87TCp03XbXxaZvujYmvgvJo22t-0zspsYy2HhNLrzdRLw56ZS8Pz-tZgtaLOcvs4eCOiEBqMiYRseEcshynVWlHia5A5ULtFanMs-Z9tbKkmsAlIr7UnrOVAq5Fl7IKeHHvy50MQb0ZhearQ0Hw5kZqc0f6qFDj50m9vj9W7Dhy2iQoIyevxrgMPtg6coshrw8bdhtGZqqRrPu9qEduP5Z-QFCXWYv</recordid><startdate>197008</startdate><enddate>197008</enddate><creator>Anton, Howard</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197008</creationdate><title>On Lebesgue-type decompositions for Banach algebras</title><author>Anton, Howard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2377-2806ec025ce0968db65521c7592eaa6439906faa3b1677e351fb3f10547962f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1970</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anton, Howard</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anton, Howard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Lebesgue-type decompositions for Banach algebras</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Austral. Math. Soc</addtitle><date>1970-08</date><risdate>1970</risdate><volume>3</volume><issue>1</issue><spage>39</spage><epage>47</epage><pages>39-47</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>If the maximal ideal space of a commutative complex unitary Banach algebra, X, is equipped with a nonnegative, finite, regular Borel measure, m, then for each element, x, in X, a. complex regular Borel measure, mx, can be obtained by integrating the Gelfand transform of x with respect to m over the Borel sets. This paper considers the possibility of direct sum decompositions of the form X = Ax ⊕ Px where Ax = {z ε X: mz ≪ mx} and Px = {z ε X: mz ┴ mx}.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972700045627</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-9727
ispartof Bulletin of the Australian Mathematical Society, 1970-08, Vol.3 (1), p.39-47
issn 0004-9727
1755-1633
language eng
recordid cdi_crossref_primary_10_1017_S0004972700045627
source EZB-FREE-00999 freely available EZB journals; Cambridge University Press Journals Complete
title On Lebesgue-type decompositions for Banach algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Lebesgue-type%20decompositions%20for%20Banach%20algebras&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=Anton,%20Howard&rft.date=1970-08&rft.volume=3&rft.issue=1&rft.spage=39&rft.epage=47&rft.pages=39-47&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972700045627&rft_dat=%3Ccambridge_cross%3E10_1017_S0004972700045627%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0004972700045627&rfr_iscdi=true