On Lebesgue-type decompositions for Banach algebras

If the maximal ideal space of a commutative complex unitary Banach algebra, X, is equipped with a nonnegative, finite, regular Borel measure, m, then for each element, x, in X, a. complex regular Borel measure, mx, can be obtained by integrating the Gelfand transform of x with respect to m over the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 1970-08, Vol.3 (1), p.39-47
1. Verfasser: Anton, Howard
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:If the maximal ideal space of a commutative complex unitary Banach algebra, X, is equipped with a nonnegative, finite, regular Borel measure, m, then for each element, x, in X, a. complex regular Borel measure, mx, can be obtained by integrating the Gelfand transform of x with respect to m over the Borel sets. This paper considers the possibility of direct sum decompositions of the form X = Ax ⊕ Px where Ax = {z ε X: mz ≪ mx} and Px = {z ε X: mz ┴ mx}.
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972700045627