On Lebesgue-type decompositions for Banach algebras
If the maximal ideal space of a commutative complex unitary Banach algebra, X, is equipped with a nonnegative, finite, regular Borel measure, m, then for each element, x, in X, a. complex regular Borel measure, mx, can be obtained by integrating the Gelfand transform of x with respect to m over the...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 1970-08, Vol.3 (1), p.39-47 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | If the maximal ideal space of a commutative complex unitary Banach algebra, X, is equipped with a nonnegative, finite, regular Borel measure, m, then for each element, x, in X, a. complex regular Borel measure, mx, can be obtained by integrating the Gelfand transform of x with respect to m over the Borel sets. This paper considers the possibility of direct sum decompositions of the form X = Ax ⊕ Px where
Ax = {z ε X: mz ≪ mx} and Px = {z ε X: mz ┴ mx}. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972700045627 |