Recalcitrance in groups
Motivated by a well-known conjecture of Andrews and Curtis, we consider the question as to how in a given n-generator group G, a given set of n “annihilators” of G, that is, with normal closure all of G, can be transformed by standard moves into a generating n-tuple. The recalcitrance of G is define...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 1999-10, Vol.60 (2), p.245-251 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by a well-known conjecture of Andrews and Curtis, we consider the question as to how in a given n-generator group G, a given set of n “annihilators” of G, that is, with normal closure all of G, can be transformed by standard moves into a generating n-tuple. The recalcitrance of G is defined to be the least number of elementary standard moves (”elementary M-transformations”) by means of which every annihilating n-tuple of G can be transformed into a generating n-tuple. We show that in the classes of finite and soluble groups, having zero recalcitrance is equivalent to nilpotence, and that a large class of 2-generator soluble groups has recalcitrance at most 3. Some examples and remarks are included. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972700036388 |