Elementary equivalence for finitely generated nilpotent groups and multilinear maps

We show that two finitely generated finite-by-nilpotent groups are elementarily equivalent if and only if they satisfy the same sentences with two alternations of quantifiers. For each integer n ≥ 2, we prove the same result for the following classes of structures: (1) the (n + 2)-tuples (A1, …, An+...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 1998-12, Vol.58 (3), p.479-493
1. Verfasser: Oger, Francis
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that two finitely generated finite-by-nilpotent groups are elementarily equivalent if and only if they satisfy the same sentences with two alternations of quantifiers. For each integer n ≥ 2, we prove the same result for the following classes of structures: (1) the (n + 2)-tuples (A1, …, An+1, f), where A1, …, An+1 are disjoint finitely generated Abelian groups and f: A1 × … × An → An+1 is a n-linear map; (2) the triples (A, B, f), where A, B are disjoint finitely generated Abelian groups and f: An → B is a n-linear map; (3) the pairs (A, f), where A is a finitely generated Abelian group and f: An → A is a n-linear map. In the proof, we use some properties of commutative rings associated to multilinear maps.
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972700032469