On group uniformities on the square of a space and extending pseudometrics
We give some conditions under which, for a given pair (d1, d2) of continuous pseudometrics respectively on X and X3, there exists a continuous semi-norm N on the free topological group F(X) such that N(x · y−1) = d1(x, y) and N(x · y · t−1 · z−1) ≥ d2((x, y), (z, t)) for all x, y, z, t ∈ X. The “ext...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 1995-04, Vol.51 (2), p.309-335 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give some conditions under which, for a given pair (d1, d2) of continuous pseudometrics respectively on X and X3, there exists a continuous semi-norm N on the free topological group F(X) such that N(x · y−1) = d1(x, y) and N(x · y · t−1 · z−1) ≥ d2((x, y), (z, t)) for all x, y, z, t ∈ X. The “extension” results are applied to characterise thin subsets of free topological groups and obtain some relationships between natural uniformities on X2 and those induced by the group uniformities *V, V* and *V* of F(X). |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972700014143 |