Some remarks on symmetry for a monoidal category
It is shown that, for a monoidal category V, not every commutation is a symmetry and also that a commutation does not suffice to define the tensor product A ⊗ B of V-categorles A and B. Moreover, it is shown that every symmetry can be transported along a monoidal equivalence.
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 1981-04, Vol.23 (2), p.209-214 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that, for a monoidal category V, not every commutation is a symmetry and also that a commutation does not suffice to define the tensor product A ⊗ B of V-categorles A and B. Moreover, it is shown that every symmetry can be transported along a monoidal equivalence. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972700007061 |