Some remarks on symmetry for a monoidal category

It is shown that, for a monoidal category V, not every commutation is a symmetry and also that a commutation does not suffice to define the tensor product A ⊗ B of V-categorles A and B. Moreover, it is shown that every symmetry can be transported along a monoidal equivalence.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 1981-04, Vol.23 (2), p.209-214
Hauptverfasser: Kasangian, Stefano, Rossi, Fabio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is shown that, for a monoidal category V, not every commutation is a symmetry and also that a commutation does not suffice to define the tensor product A ⊗ B of V-categorles A and B. Moreover, it is shown that every symmetry can be transported along a monoidal equivalence.
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972700007061