Clique coverings of graphs V: maximal-clique partitions
A maximal-clique partition of a graph G is a way of covering G with maximal complete subgraphs, such that every edge belongs to exactly one of the subgraphs. If G has a maximal-clique partition, the maximal-clique partition number of G is the smallest cardinality of such partitions. In this paper th...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 1982-06, Vol.25 (3), p.337-356 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A maximal-clique partition of a graph G is a way of covering G with maximal complete subgraphs, such that every edge belongs to exactly one of the subgraphs. If G has a maximal-clique partition, the maximal-clique partition number of G is the smallest cardinality of such partitions. In this paper the existence of maximal-clique partitions is discussed – for example, we explicitly describe all graphs with maximal degree at most four which have maximal-clique partitions - and discuss the maximal-clique partition number and its relationship to other clique covering and partition numbers. The number of different maximal-clique partitions of a given graph is also discussed. Several open problems are presented. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972700005414 |