The bisection width of cubic graphs

For a graph G, define the bisection width bw(G) of G as min { eG(A,B): {A,B} partitions V(G) with ‖A| − |B‖ ≤ 1 } where eG(A, B) denotes the number of edges in G with one end in A and one end in B. We show almost every cubic graph G of order n has bw(G) ≥ n/11 while every such graph has bw(G) ≤ (n +...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 1989-06, Vol.39 (3), p.389-396
Hauptverfasser: Clark, L.H., Entringer, R.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a graph G, define the bisection width bw(G) of G as min { eG(A,B): {A,B} partitions V(G) with ‖A| − |B‖ ≤ 1 } where eG(A, B) denotes the number of edges in G with one end in A and one end in B. We show almost every cubic graph G of order n has bw(G) ≥ n/11 while every such graph has bw(G) ≤ (n + 138)/3. We also show that almost every r-regular graph G of order n has bw(G) ≥ crn where cr → r/4 as r → ∞. Our last result is asymtotically correct.
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972700003300