The bisection width of cubic graphs
For a graph G, define the bisection width bw(G) of G as min { eG(A,B): {A,B} partitions V(G) with ‖A| − |B‖ ≤ 1 } where eG(A, B) denotes the number of edges in G with one end in A and one end in B. We show almost every cubic graph G of order n has bw(G) ≥ n/11 while every such graph has bw(G) ≤ (n +...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 1989-06, Vol.39 (3), p.389-396 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a graph G, define the bisection width bw(G) of G as min { eG(A,B): {A,B} partitions V(G) with ‖A| − |B‖ ≤ 1 } where eG(A, B) denotes the number of edges in G with one end in A and one end in B. We show almost every cubic graph G of order n has bw(G) ≥ n/11 while every such graph has bw(G) ≤ (n + 138)/3. We also show that almost every r-regular graph G of order n has bw(G) ≥ crn where cr → r/4 as r → ∞. Our last result is asymtotically correct. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972700003300 |