Design, numerical simulation and experimental testing of a controlled electrical actuation system in a real aircraft morphing wing model
The paper focuses on the modelling, simulation and control of an electrical miniature actuator integrated in the actuation mechanism of a new morphing wing application. The morphed wing is a portion of an existing regional aircraft wing, its interior consisting of spars, stringers, and ribs, and hav...
Gespeichert in:
Veröffentlicht in: | Aeronautical journal 2015-09, Vol.119 (1219), p.1047-1072 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper focuses on the modelling, simulation and control of an electrical miniature actuator integrated in the actuation mechanism of a new morphing wing application. The morphed wing is a portion of an existing regional aircraft wing, its interior consisting of spars, stringers, and ribs, and having a structural rigidity similar to the rigidity of a real aircraft. The upper surface of the wing is a flexible skin, made of composite materials, and optimised in order to fulfill the morphing wing project requirements. In addition, a controllable rigid aileron is attached on the wing. The established architecture of the actuation mechanism uses four similar miniature actuators fixed inside the wing and actuating directly the flexible upper surface of the wing. The actuator was designed in-house, as there is no actuator on the market that could fit directly inside our morphing wing model. It consists of a brushless direct current (BLDC) motor with a gearbox and a screw for pushing and pulling the flexible upper surface of the wing. The electrical motor and the screw are coupled through a gearing system. Before proceeding with the modelling, the actuator is tested experimentally (stand alone configuration) to ensure that the entire range of the requirements (rated or nominal torque, nominal current, nominal speed, static force, size) would be fulfilled. In order to validate the theoretical, simulation and standalone configuration experimental studies, a bench testing and a wind-tunnel testing of four similar actuators integrated on the real morphing wing model are performed. |
---|---|
ISSN: | 0001-9240 2059-6464 |
DOI: | 10.1017/S0001924000011131 |