One-dimensional Kohonen maps are super-stable with exponential rate
Kohonen self-organizing interval maps are considered. In this model a linear graph is embedded randomly into the unit interval. At each time a point is chosen randomly according to a fixed distribution. The nearest vertex and some of its nearby neighbors are moved closer to the point. These models h...
Gespeichert in:
Veröffentlicht in: | Advances in applied probability 1999-06, Vol.31 (2), p.367-393 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Kohonen self-organizing interval maps are considered. In this model a linear graph is embedded randomly into the unit interval. At each time a point is chosen randomly according to a fixed distribution. The nearest vertex and some of its nearby neighbors are moved closer to the point. These models have been proposed as models of learning in the audio-cortex. The models possess not only the structure of a Markov chain, but also the added structure of a random dynamical system. This structure is used to show that for a large class of these models, in a strong way, the initial conditions are unimportant and only the dynamics govern the future. A contractive condition is proven in spite of the fact that the maps are not continuous. This, in turn, shows that the Markov chain is uniformly ergodic. |
---|---|
ISSN: | 0001-8678 1475-6064 |
DOI: | 10.1017/S0001867800009162 |