Convex Duality in Mean-Variance Hedging Under Convex Trading Constraints
We study mean-variance hedging under portfolio constraints in a general semimartingale model. The constraints are formulated via predictable correspondences, meaning that the trading strategy is restricted to lie in a closed convex set which may depend on the state and time in a predictable way. To...
Gespeichert in:
Veröffentlicht in: | Advances in applied probability 2012-12, Vol.44 (4), p.1084-1112 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study mean-variance hedging under portfolio constraints in a general semimartingale model. The constraints are formulated via predictable correspondences, meaning that the trading strategy is restricted to lie in a closed convex set which may depend on the state and time in a predictable way. To obtain the existence of a solution, we first establish the closedness in
L
2
of the space of all gains from trade (i.e. the terminal values of stochastic integrals with respect to the price process of the underlying assets). This is a first main contribution which enables us to tackle the problem in a systematic and unified way. In addition, using the closedness allows us to explain and generalise in a systematic way the convex duality results obtained previously by other authors via ad-hoc methods in specific frameworks. |
---|---|
ISSN: | 0001-8678 1475-6064 |
DOI: | 10.1017/S0001867800006054 |