Aggregation of a random-coefficient ar(1) process with infinite variance and idiosyncratic innovations

Contemporaneous aggregation of N independent copies of a random-coefficient AR(1) process with random coefficient a ∈ (−1, 1) and independent and identically distributed innovations belonging to the domain of attraction of an α-stable law (0 < α < 2) is discussed. We show that, under the norma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 2010-06, Vol.42 (2), p.509-527
Hauptverfasser: Puplinskaitė, Donata, Surgailis, Donatas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Contemporaneous aggregation of N independent copies of a random-coefficient AR(1) process with random coefficient a ∈ (−1, 1) and independent and identically distributed innovations belonging to the domain of attraction of an α-stable law (0 < α < 2) is discussed. We show that, under the normalization N 1/α , the limit aggregate exists, in the sense of weak convergence of finite-dimensional distributions, and is a mixed stable moving average as studied in Surgailis, Rosiński, Mandrekar and Cambanis (1993). We focus on the case where the slope coefficient a has probability density vanishing regularly at a = 1 with exponent b ∈ (0, α − 1) for α ∈ (1, 2). We show that in this case, the limit aggregate { X̅ t } exhibits long memory. In particular, for { X̅ t }, we investigate the decay of the codifference, the limit of partial sums, and the long-range dependence (sample Allen variance) property of Heyde and Yang (1997).
ISSN:0001-8678
1475-6064
DOI:10.1017/S0001867800004171