The Poisson-Voronoi tessellation: relationships for edges

In a unified approach, this paper presents distributional properties of a Voronoi tessellation generated by a homogeneous Poisson point process in the Euclidean space of arbitrary dimension. Probability density functions and moments are given for characteristics of the ‘typical’ edge in lower-dimens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 2005-06, Vol.37 (2), p.279-296
1. Verfasser: Muche, L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a unified approach, this paper presents distributional properties of a Voronoi tessellation generated by a homogeneous Poisson point process in the Euclidean space of arbitrary dimension. Probability density functions and moments are given for characteristics of the ‘typical’ edge in lower-dimensional section hyperplanes (edge lengths, adjacent angles). We investigate relationships between edges and their neighbours, called Poisson points or centres; namely angular distributions, distances, and positions of neighbours relative to the edge. The approach is analytical, and the results are given partly explicitly and partly as integral expressions, which are suitable for the numerical calculations also presented.
ISSN:0001-8678
1475-6064
DOI:10.1017/S0001867800000185