Refining the Hallstatt Plateau: Short-Term 14 C Variability and Small Scale Offsets in 50 Consecutive Single Tree-Rings from Southwest Scotland Dendro-Dated to 510–460 BC

Radiocarbon ( 14 C) wiggle-match dating is a technique with a substantial potential to improve the precision of dating timbers in situations where dendrochronology is not tenable. However, one of the key reasons why obtaining a dendrochronological determination might be difficult is the short-lived...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiocarbon 2018-02, Vol.60 (1), p.219-237
Hauptverfasser: Jacobsson, Piotr, Hamilton, William Derek, Cook, Gordon, Crone, Anne, Dunbar, Elaine, Kinch, Helen, Naysmith, Philip, Tripney, Brian, Xu, Sheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radiocarbon ( 14 C) wiggle-match dating is a technique with a substantial potential to improve the precision of dating timbers in situations where dendrochronology is not tenable. However, one of the key reasons why obtaining a dendrochronological determination might be difficult is the short-lived nature of timbers on a range of archaeological sites, something that also affects the efficiency of the wiggle-match dating technique. Combined with the potential for high expense that the technique presents, it is paramount that wiggle-match dating research design has a good empirical basis. To this end we dated 50 consecutive, individual rings from a timber that grew during the Hallstatt radiocarbon calibration plateau (ca. 750–400 cal BC) in southwest Scotland. The results indicate that (1) the precision and accuracy of wiggle-match dates carried out on short-lived sequences during the Hallstatt plateau may suffer due to insufficient resolution of the calibration data, (2) sampling time-frames roughly equivalent to the underpinning calibration data are recommended (for the period in question this means decadal blocks), and (3) short-lived sequences are at risk of losing accuracy if the actual past trend of radiocarbon diverges from the mean of the radiocarbon calibration curve.
ISSN:0033-8222
1945-5755
DOI:10.1017/RDC.2017.90