The evaluation of electrical circuits for adjusting sound transmission properties of piezoelectric metamaterials

In rods and beams, piezoelectric patches with external circuits have been extensively studied to dampen structural vibrations at the sound source. This work uses a large flat-layer type of piezoelectric acoustic metamaterial (AM) model for noise attenuation in the sound transmission stage rather tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing 2023-10, Vol.200, p.110549, Article 110549
Hauptverfasser: Ji, Guosheng, Zhou, Jie, Huber, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In rods and beams, piezoelectric patches with external circuits have been extensively studied to dampen structural vibrations at the sound source. This work uses a large flat-layer type of piezoelectric acoustic metamaterial (AM) model for noise attenuation in the sound transmission stage rather than at the sound source. This could be directly implemented as a large space sound transmission barrier at the interface of diverse media including gas, liquid, and solid materials. The general analytical model to derive acoustic properties of the piezoelectric acoustic metamaterial is established by the equivalent transfer matrix approach for normal incidence waves. This has been validated numerically using the finite element method and experimentally in the solid medium propagation for the first time. Moreover, a parametric study of sound transmission properties in air, water, and steel is conducted by adjusting external circuit parameters, flat-layer structures, and piezoelectric materials. The findings demonstrate the ability to control sound resonance frequency and bandwidth through the propagation process over a wide range using external circuit parameters alone. This endows the piezoelectric acoustic metamaterial with great versatility relative to conventional, fixed structure, metamaterials used as sound barriers at the interface of diverse media. In addition, the size of the piezoelectric AM can reach a deeply sub-wavelength level, less than 10−3 of the resonance wavelength in both water and solid media, which goes far beyond the wavelength-to-thickness ratio of classical acoustic metamaterials. The layer-type piezoelectric AM thus shows excellent performance in tunability and compactness for space-sensitive applications as well as great potential in combining metamaterials with electronic control. [Display omitted] •Develop a large flat-plate piezoelectric AM model to attenuate sound transmission.•Applicable to diverse media interfaces including gas, liquid, and solid materials.•Experimentally validated in the sound transmission stage for the first time.•Adjust resonance frequency and bandwidth over a wide range by external circuits.•Deeply sub-wavelength structure size: less than 1/1000 of the resonance wavelength.
ISSN:0888-3270
1096-1216
DOI:10.1016/j.ymssp.2023.110549