Circ_DCAF6 potentiates cell stemness and growth in breast cancer through GLI1-Hedgehog pathway
Circular RNAs (circRNAs) are extensively revealed as a malignant activator or suppressor in multiple pathological processes including cancer cell stemness and growth. However, the association of circ_DCAF6 with breast cancer (BC) cell growth and stemness has not been well depicted. In this research,...
Gespeichert in:
Veröffentlicht in: | Experimental and molecular pathology 2020-10, Vol.116, p.104492, Article 104492 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Circular RNAs (circRNAs) are extensively revealed as a malignant activator or suppressor in multiple pathological processes including cancer cell stemness and growth. However, the association of circ_DCAF6 with breast cancer (BC) cell growth and stemness has not been well depicted. In this research, qRT-PCR clarified the high level of circ_DCAF6 in BC cells. In functional aspects, BC cells presented suppressed proliferation and stemness in the absence of circ_DCAF6. The potential correlation of circ_DCAF6 with Hedgehog (Hh) pathway was unveiled utilizing its specific inhibitor or agonist in qRT-PCR and functional assays. Circ_DCAF6 positively mediated the expression of GLI1 and its facilitating impacts on BC cell proliferation and stemness required the participation of GLI1-dependent Hh signaling pathway. In depth, circ_DCAF6 post-transcriptionally upregulated GLI1 expression through sequestering miR-616-3p. Rescue experiments verified that the suppressive influence of circ_DCAF6 depletion or miR-616-3p upregulation on BC progression was reversed by GLI1 upregulation. In summary, a probable contribution of circ_DCAF6 to BC cell growth and stemness was elaborated. Circ_DCAF6 assisted in Hh signal pathway activation via the up-regulation of GLI1 by sponging miR-616-3p, generating new thoughts on future direction of antagonizing BC tumorigenesis and stem-like property.
•Depleted circ_DCAF6 blocked proliferation and stemness in BC.•Loss of circ_DCAF6 impaired Hh pathway activation.•circ_DCAF6 sequestered miR-616-3p from GLI1.•circ_DCAF6 competed with GLI1 for miR-616-3p binding in regulating BC tumorigenesis and stemness. |
---|---|
ISSN: | 0014-4800 1096-0945 |
DOI: | 10.1016/j.yexmp.2020.104492 |