Area-selective deposition of lateral van der Waals semiconductor heterostructures
Scalable area-selective deposition of van der Waals semiconductor monolayer enables the tunable design of atomically thin, two-dimensional electronic and photonic material platforms. Here, we report lateral patterning of tunable heterostructures composed of MoS2 and WS2 films using sequential chemic...
Gespeichert in:
Veröffentlicht in: | Cell reports physical science 2024-11, Vol.5 (11), p.102254, Article 102254 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Scalable area-selective deposition of van der Waals semiconductor monolayer enables the tunable design of atomically thin, two-dimensional electronic and photonic material platforms. Here, we report lateral patterning of tunable heterostructures composed of MoS2 and WS2 films using sequential chemical vapor deposition. These MoS2-WS2 lateral heterostructures are synthesized using a kinetics-controlled process that exploits differences in surface energies and supersaturation, allowing for precise monolayer-by-monolayer stitching. This approach ensures accurate stitching of monolayers without atomic intermixing within the layer. We achieve scalable planar integration of dissimilar monolayer films at millimeter scale, featuring alternating channels ranging from a few hundred nanometers to tens of micrometers in width. Moreover, these on-monolayer integrations directly synthesize tunable 2D resistor networks and planar photodetectors for next-generation atomically thin electronic circuits.
[Display omitted]
•Scalable area-selective growth of MoS2-WS2 monolayer lateral heterostructures•Nanoconfined WS2 channels down to 500 nm achieved with atomic precision•MoS2-WS2-MoS2 lateral photodetectors with efficient carrier collection•Linear resistance scaling enables tunable 2D resistor networks
Lee et al. demonstrate a kinetics-controlled method for creating precise monolayer heterostructures of 2D semiconductors on a large scale. This scalable approach enables tunable 2D resistor networks and photodetectors, advancing next-generation atomically thin electronic circuits. |
---|---|
ISSN: | 2666-3864 2666-3864 |
DOI: | 10.1016/j.xcrp.2024.102254 |