Exploring the benefits, challenges, and feasibility of integrating power electronics into c-Si solar cells

Power electronics traditionally plays a crucial role in conditioning the power of photovoltaic (PV) modules and connecting the systems to the electricity grid. Recently, PV module designs with more sub-module power electronics are gaining increased attention. These designs can offer higher reliabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports physical science 2022-07, Vol.3 (7), p.100944, Article 100944
Hauptverfasser: van Nijen, David A., Manganiello, Patrizio, Zeman, Miro, Isabella, Olindo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Power electronics traditionally plays a crucial role in conditioning the power of photovoltaic (PV) modules and connecting the systems to the electricity grid. Recently, PV module designs with more sub-module power electronics are gaining increased attention. These designs can offer higher reliability and improved resilience against non-uniform illumination. In this review, we explore an innovative method to facilitate sub-module power electronics, which is to integrate the power components into crystalline silicon (c-Si) PV cells. This approach has the potential to enable numerous design innovations. However, the fabrication processes of the integrated power electronics should be compatible with the PV cell fabrication methods. Moreover, only a limited amount of additional processing steps can be added with respect to standard solar cell manufacturing processes to achieve a cost-effective design. After reviewing previous research on this topic, we propose various new design possibilities for PV-cell-integrated diodes, transistors, capacitors, and inductors. Furthermore, we discuss the technical trade-offs and challenges that need to be overcome for successful industry adoption. [Display omitted] In this work, Van Nijen et al. explore the possibility of integrating power electronic components into crystalline silicon solar cells. The progress, benefits, possibilities, and challenges of this approach are investigated. Integration of power components into solar cells could enable numerous design innovations in photovoltaic modules and systems.
ISSN:2666-3864
2666-3864
DOI:10.1016/j.xcrp.2022.100944