The fundamental ultrasonic edge wave mode: Propagation characteristics and potential for distant damage detection

•The fundamental edge wave (ES0) mode is excited using the wedge method.•ES0 mode is characterized using Laser Vibrometry.•Low frequency ES0 mode is suitable for defect detection along free edges.•High frequency ES0 mode is energy dispersive and interferes with S0.•Experimental results match well wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasonics 2021-07, Vol.114, p.106369, Article 106369
Hauptverfasser: Hughes, James M., Mohabuth, Munawwar, Kotousov, Andrei, Ng, Ching-Tai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•The fundamental edge wave (ES0) mode is excited using the wedge method.•ES0 mode is characterized using Laser Vibrometry.•Low frequency ES0 mode is suitable for defect detection along free edges.•High frequency ES0 mode is energy dispersive and interferes with S0.•Experimental results match well with FE and previous theoretical studies. Engineering structures are often composed of thin elements containing features such as free edges, welds, ribs, and holes, which makes distant safety inspections based on guided waves difficult due to wave scattering. However, these features can themselves generate so-called ‘feature-guided’ waves, which can potentially be utilised for damage detection. One such example are flexural wedge waves, which have been investigated extensively both theoretically and experimentally in the past. Another example is edge waves. These waves, which are a natural analogue of Rayleigh waves propagating in a finite thickness plate, have received relatively little attention, specifically with respect to their possible use in distant damage inspections and Structural Health Monitoring systems. The current paper is aimed to address this gap, and it is focused on the investigation of the fundamental mode of edge waves (ES0), which is the most promising for practical applications. The features of the transient ES0 mode are investigated experimentally and numerically, and compared with previous theoretical studies. It was demonstrated that the ES0 mode can be effectively excited with the wedge excitation method, and distant damage detection with this wave mode at low frequency-thickness values (FTV 
ISSN:0041-624X
1874-9968
DOI:10.1016/j.ultras.2021.106369