Artificial intelligence for predicting urban heat island effect and optimising land use/land cover for mitigation: Prospects and recent advancements

Rocketing global urbanisation has caused an increase in the Urban Heat Island (UHI) effect, resulting in various negative implications for the urban environment. Quantifying the Surface UHI (SUHI) effect using Land Surface Temperature (LST), Local Climate Zones (LCZ), and deep learning algorithms su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Urban climate 2024-05, Vol.55, p.101976, Article 101976
Hauptverfasser: Mohamed, Omar Y.A., Zahidi, Izni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rocketing global urbanisation has caused an increase in the Urban Heat Island (UHI) effect, resulting in various negative implications for the urban environment. Quantifying the Surface UHI (SUHI) effect using Land Surface Temperature (LST), Local Climate Zones (LCZ), and deep learning algorithms such as Convolutional Neural Networks (CNN) and pix2pix have prospects in aiding sustainable city planning and modification. Most research on mitigating SUHI promotes greenery as a solution, allowing LCZ optimisation to be explored. Using Heat Vulnerability Index (HVI) and evolutionary algorithms like Genetic Algorithms (GA) and Particle Swarm Optimisation (PSO) show promise in achieving high-quality optimisation solutions. This short communication explores the potential of these artificial intelligence technologies to combat the UHI effect and enhance urban sustainability.
ISSN:2212-0955
2212-0955
DOI:10.1016/j.uclim.2024.101976