Microstructure and performance of (CoCrNi)88Al6Ti6-cBN composite coatings by high-speed laser cladding (HSLC): A novel strategy for synergizing wear-resistance and friction reduction
To enhance the wear-resistance of nickel-based blade surfaces, a (CoCrNi)88Al6Ti6-cBN composite coating was produced on GH4169 substrates using HSLC. The microstructure, microhardness and tribology properties of the coating at 25 and 600 °C were evaluated. The finding demonstrates that the hardness...
Gespeichert in:
Veröffentlicht in: | Tribology international 2024-12, Vol.200, p.110175, Article 110175 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To enhance the wear-resistance of nickel-based blade surfaces, a (CoCrNi)88Al6Ti6-cBN composite coating was produced on GH4169 substrates using HSLC. The microstructure, microhardness and tribology properties of the coating at 25 and 600 °C were evaluated. The finding demonstrates that the hardness of the cBN composite coating increase by 91.6 HV0.3 attributed to precipitation strengthening, second phase strengthening and dislocation strengthening. Furthermore, the anti-wear performance of the coating increased by 3.72 times at 25 °C and by 3.23 times at 600 °C, respectively. Additionally, the friction coefficient exhibited by the coating diminished significantly by converting a portion of the cBN to hBN under the high temperatures generated by laser and oxides generating. |
---|---|
ISSN: | 0301-679X |
DOI: | 10.1016/j.triboint.2024.110175 |