“Lubrication Brain” ― A machine learning framework of lubrication oil molecule design

In this work, we propose the concept of “Lubrication Brain”. We adopt the Generative Adversarial Networks (GAN) coupling with reinforcement learning to automatically generate new molecules of Lubrication oil with desired properties. We pre-train a fully connected feedforward artificial neural networ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tribology international 2023-05, Vol.183, p.108381, Article 108381
Hauptverfasser: Zhou, Rui, Ma, Rui, Bao, Luyao, Cai, Meirong, Zhou, Feng, Li, Weimin, Wang, Xiaobo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we propose the concept of “Lubrication Brain”. We adopt the Generative Adversarial Networks (GAN) coupling with reinforcement learning to automatically generate new molecules of Lubrication oil with desired properties. We pre-train a fully connected feedforward artificial neural network (NN) from experimental results to predict magnitude of properties of new molecules. This NN is embodied into GAN to evaluate the properties of new molecules, which serves as inputs of reinforcement learning to make GAN generate molecules with targeted properties. The application of “Lubrication Brain” on designing diester oil molecule with high flash point validates our approach which open new paradigm to design Lubrication oils.
ISSN:0301-679X
1879-2464
DOI:10.1016/j.triboint.2023.108381