Experimental and numerical based model formulation for estimation of subgrade resilient modulus using the repeated load CBR test considering in situ state of stress
Characterizing subgrade in terms of resilient modulus is a crucial aspect of flexible pavement design. This paper proposes a methodology and predictive model to estimate the resilient modulus with better consideration of subgrade soils’ in situ stress state using a simple Repeated Load CBR (RLCBR) t...
Gespeichert in:
Veröffentlicht in: | Transportation Geotechnics 2024-09, Vol.48, p.101331, Article 101331 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Characterizing subgrade in terms of resilient modulus is a crucial aspect of flexible pavement design. This paper proposes a methodology and predictive model to estimate the resilient modulus with better consideration of subgrade soils’ in situ stress state using a simple Repeated Load CBR (RLCBR) test. RLCBR tests were conducted on eight subgrade soils at three moisture contents. Numerical studies were conducted by simulating the CBR test in the commercial package LS-DYNA® to understand the stress state under plunger loading concerning field conditions. A new model was proposed for the characterization of subgrade soils based on laboratory RLCBR tests and the FEM, considering the stress state experienced by subgrade soils in the field. The proposed model was validated using data from four other soils and showed good agreement. The study model showed a better predictive capacity for the low plastic subgrade soils than previously developed models. Practicing engineers can use the developed model for estimating the subgrade resilient modulus at the recommended stress state for mechanistic pavement design while understanding the soil’s load-deformation behavior. |
---|---|
ISSN: | 2214-3912 2214-3912 |
DOI: | 10.1016/j.trgeo.2024.101331 |