Road transportation emission prediction and policy formulation: Machine learning model analysis
Minimizing the detrimental effects of road transport greenhouse gas (GHG) emissions on climate change and global warming requires accurate emission forecasting. To forecast greenhouse gas emissions from industrial and civilian transportation on roads in China, we present new approaches that use data...
Gespeichert in:
Veröffentlicht in: | Transportation research. Part D, Transport and environment Transport and environment, 2024-10, Vol.135, p.104390, Article 104390 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Minimizing the detrimental effects of road transport greenhouse gas (GHG) emissions on climate change and global warming requires accurate emission forecasting. To forecast greenhouse gas emissions from industrial and civilian transportation on roads in China, we present new approaches that use data extraction and managed machine learning methods for regression and identification. Four methods are examined: decision tree, multinomial logistic regression, multivariate linear regression, and artificial neural network (ANN) multiple-layer perceptron. The findings suggest that the multiple-layer perceptron approach of ANN has superior prediction accuracy compared to other models. Ensemble modelling techniques, such as Bagging and Boosting, significantly improved the predictive performance of the developed multilayer perceptron system. The paper’s conclusions are significant for transport policymakers, regulators, and international organizations in mitigating GHG emissions. |
---|---|
ISSN: | 1361-9209 |
DOI: | 10.1016/j.trd.2024.104390 |