Road transportation emission prediction and policy formulation: Machine learning model analysis

Minimizing the detrimental effects of road transport greenhouse gas (GHG) emissions on climate change and global warming requires accurate emission forecasting. To forecast greenhouse gas emissions from industrial and civilian transportation on roads in China, we present new approaches that use data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research. Part D, Transport and environment Transport and environment, 2024-10, Vol.135, p.104390, Article 104390
Hauptverfasser: Yin, Chengfeng, Wu, Jiaxi, Sun, Xialing, Meng, Zheng, Lee, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Minimizing the detrimental effects of road transport greenhouse gas (GHG) emissions on climate change and global warming requires accurate emission forecasting. To forecast greenhouse gas emissions from industrial and civilian transportation on roads in China, we present new approaches that use data extraction and managed machine learning methods for regression and identification. Four methods are examined: decision tree, multinomial logistic regression, multivariate linear regression, and artificial neural network (ANN) multiple-layer perceptron. The findings suggest that the multiple-layer perceptron approach of ANN has superior prediction accuracy compared to other models. Ensemble modelling techniques, such as Bagging and Boosting, significantly improved the predictive performance of the developed multilayer perceptron system. The paper’s conclusions are significant for transport policymakers, regulators, and international organizations in mitigating GHG emissions.
ISSN:1361-9209
DOI:10.1016/j.trd.2024.104390