Fake it till you make it: Synthetic data for emerging carsharing programs

Carsharing is an integral part of the transformation toward flexible and sustainable mobility. New carsharing programs are entering the market to challenge large operators by offering innovative services. This study investigates the use of generative machine learning models for creating synthetic da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research. Part D, Transport and environment Transport and environment, 2024-02, Vol.127, p.104067, Article 104067
Hauptverfasser: Albrecht, Tobias, Keller, Robert, Rebholz, Dominik, Röglinger, Maximilian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carsharing is an integral part of the transformation toward flexible and sustainable mobility. New carsharing programs are entering the market to challenge large operators by offering innovative services. This study investigates the use of generative machine learning models for creating synthetic data to support carsharing decision–making when data access is limited. To this end, it explores the evaluation, selection, and implementation of leading-edge methods, such as generative adversarial networks (GANs) and variational autoencoders (VAEs), to generate synthetic tabular transaction data of carsharing trips. The study analyzes usage data of an emerging carsharing program that is expanding its services to include free-floating electric vehicles (EVs). The results show that augmenting real training data with synthetic samples improves predictive modeling of upcoming trips by up to 4.63%. These results support carsharing researchers and practitioners in generating and leveraging synthetic mobility data to develop solutions to real-world decision support problems in carsharing.
ISSN:1361-9209
1879-2340
DOI:10.1016/j.trd.2024.104067