Estimating latent demand of shared mobility through censored Gaussian Processes

•Observability of mobility demand is inherently limited by supply.•Censored regression applied to mobility demand to mitigate bias.•Censored Gaussian Process formulated for time-varying censorship.•Experiments with synthetic and real-world data demonstrate solution approach.•Benefit of preserving th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research. Part C, Emerging technologies Emerging technologies, 2020-11, Vol.120, p.102775, Article 102775
Hauptverfasser: Gammelli, Daniele, Peled, Inon, Rodrigues, Filipe, Pacino, Dario, Kurtaran, Haci A., Pereira, Francisco C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Observability of mobility demand is inherently limited by supply.•Censored regression applied to mobility demand to mitigate bias.•Censored Gaussian Process formulated for time-varying censorship.•Experiments with synthetic and real-world data demonstrate solution approach.•Benefit of preserving the censored information is measured. Transport demand is highly dependent on supply, especially for shared transport services where availability is often limited. As observed demand cannot be higher than available supply, historical transport data typically represents a biased, or censored, version of the true underlying demand pattern. Without explicitly accounting for this inherent distinction, predictive models of demand would necessarily represent a biased version of true demand, thus less effectively predicting the needs of service users. To counter this problem, we propose a general method for censorship-aware demand modeling, for which we derive a censored likelihood function capable of handling time-varying supply. We apply this method to the task of shared mobility demand prediction by incorporating the censored likelihood within a Gaussian Process model, which can flexibly approximate arbitrary functional forms. Experiments on artificial and real-world datasets show how taking into account the limiting effect of supply on demand is essential in the process of obtaining an unbiased predictive model of user demand behavior.
ISSN:0968-090X
1879-2359
DOI:10.1016/j.trc.2020.102775