A toxicogenomic approach to assess kidney injury induced by mercuric chloride in rats

Kidney injury caused by disease, trauma, environmental exposures, or drugs may result in decreased renal function, chronic kidney disease, or acute kidney failure. Diagnosis of kidney injury using serum creatinine levels, a common clinical test, only identifies renal dysfunction after the kidneys ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicology (Amsterdam) 2020-09, Vol.442, p.152530, Article 152530
Hauptverfasser: Schyman, Patric, Printz, Richard L., AbdulHameed, Mohamed Diwan M., Estes, Shanea K., Shiota, Chiyo, Shiota, Masakazu, Wallqvist, Anders
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kidney injury caused by disease, trauma, environmental exposures, or drugs may result in decreased renal function, chronic kidney disease, or acute kidney failure. Diagnosis of kidney injury using serum creatinine levels, a common clinical test, only identifies renal dysfunction after the kidneys have undergone severe damage. Other indicators sensitive to kidney injury, such as the level of urine kidney injury molecule-1 (KIM-1), lack the ability to differentiate between injury phenotypes. To address early detection as well as detailed categorization of kidney-injury phenotypes in preclinical animal or cellular studies, we previously identified eight sets (modules) of co-expressed genes uniquely associated with kidney histopathology. Here, we used mercuric chloride (HgCl2)―a model nephrotoxicant―to chemically induce kidney injuries as monitored by KIM-1 levels in Sprague Dawley rats at two doses (0.25 or 0.50 mg/kg) and two exposure lengths (10 or 34 h). We collected whole transcriptome RNA-seq data derived from five animals at each dose and time point to perform a toxicogenomics analysis. Consistent with documented injury phenotypes for HgCl2 toxicity, our kidney-injury-module approach identified the onset of necrosis and dilation as early as 10 h after a dose of 0.50 mg/kg that produced only mild injury as judged by urinary KIM-1 excretion. The results of these animal studies highlight the potential of the kidney-injury-module approach to provide a sensitive and histopathology-specific readout of renal toxicity.
ISSN:0300-483X
1879-3185
DOI:10.1016/j.tox.2020.152530