Hereditarily decomposable continua have non-block points
In this note we expand upon our results from [1] to show that every nondegenerate hereditarily decomposable Hausdorff continuum has two or more non-block points, i.e. points whose complements contain a continuum-connected dense subset. The celebrated non-cut point existence theorem states that all n...
Gespeichert in:
Veröffentlicht in: | Topology and its applications 2024-11, Vol.357, p.109072, Article 109072 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note we expand upon our results from [1] to show that every nondegenerate hereditarily decomposable Hausdorff continuum has two or more non-block points, i.e. points whose complements contain a continuum-connected dense subset. The celebrated non-cut point existence theorem states that all nondegenerate Hausdorff continua have two or more non-cut points, and the corresponding result for non-block points is known to hold for metrizable continua. It is also known that there are consistent examples of Hausdorff continua with no non-block points, but that non-block point existence holds for Hausdorff continua that are either aposyndetic, irreducible, or separable. |
---|---|
ISSN: | 0166-8641 |
DOI: | 10.1016/j.topol.2024.109072 |