Hereditarily decomposable continua have non-block points

In this note we expand upon our results from [1] to show that every nondegenerate hereditarily decomposable Hausdorff continuum has two or more non-block points, i.e. points whose complements contain a continuum-connected dense subset. The celebrated non-cut point existence theorem states that all n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Topology and its applications 2024-11, Vol.357, p.109072, Article 109072
1. Verfasser: Anderson, Daron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note we expand upon our results from [1] to show that every nondegenerate hereditarily decomposable Hausdorff continuum has two or more non-block points, i.e. points whose complements contain a continuum-connected dense subset. The celebrated non-cut point existence theorem states that all nondegenerate Hausdorff continua have two or more non-cut points, and the corresponding result for non-block points is known to hold for metrizable continua. It is also known that there are consistent examples of Hausdorff continua with no non-block points, but that non-block point existence holds for Hausdorff continua that are either aposyndetic, irreducible, or separable.
ISSN:0166-8641
DOI:10.1016/j.topol.2024.109072