Weakly first-countability in strongly topological gyrogroups

In this note, it is proved that (1) if (G,τ,⊕) is a strongly topological gyrogroup and H is a closed strong subgyrogroup of G, then G/H is κ-Fréchet-Urysohn if and only if G/H is strongly κ-Fréchet-Urysohn under the condition that H is neutral; (2) let H be a closed strong subgyrogroup of a strongly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Topology and its applications 2024-06, Vol.350, p.108920, Article 108920
Hauptverfasser: Zhang, Jing, Lin, Kaixiong, Xi, Wenfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note, it is proved that (1) if (G,τ,⊕) is a strongly topological gyrogroup and H is a closed strong subgyrogroup of G, then G/H is κ-Fréchet-Urysohn if and only if G/H is strongly κ-Fréchet-Urysohn under the condition that H is neutral; (2) let H be a closed strong subgyrogroup of a strongly topological gyrogroup(G,τ,⊕), then the equality Δ(G/H)=ψ(G/H) holds when H is neutral; (3) if (G,τ,⊕) is a sequential strongly topological gyrogroup having a point-countable k-network, then G is metrizable or a topological sum of cosmic subspaces. There results improve the related results in topological groups.
ISSN:0166-8641
1879-3207
DOI:10.1016/j.topol.2024.108920