On the product of almost discrete Grothendieck spaces
A topological space X is called almost discrete, if it has precisely one nonisolated point. In this paper, we get that for a countable product X=∏Xi of almost discrete spaces Xi the space Cp(X) of all continuous real-valued functions with the topology of pointwise convergence is a μ-space if, and on...
Gespeichert in:
Veröffentlicht in: | Topology and its applications 2024-06, Vol.350, p.108919, Article 108919 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A topological space X is called almost discrete, if it has precisely one nonisolated point. In this paper, we get that for a countable product X=∏Xi of almost discrete spaces Xi the space Cp(X) of all continuous real-valued functions with the topology of pointwise convergence is a μ-space if, and only if, X is a weak q-space if, and only if, t(X)=ω if, and only if, X is functionally generated by the family of all its countable subspaces.
This result makes it possible to solve Archangel'skii's problem on the product of Grothendieck spaces. It is proved that in the model of ZFC, obtained by adding one Cohen real, there are Grothendieck spaces X and Y such that X×Y is not weakly Grothendieck space. In (PFA): the product of any countable family almost discrete Grothendieck spaces is a Grothendieck space. |
---|---|
ISSN: | 0166-8641 1879-3207 |
DOI: | 10.1016/j.topol.2024.108919 |