The complex of essential surfaces is contractible
Let M be a 3-manifold and S be a component of ∂M. We introduce a simplicial complex E(M,S), whose vertices are isotopy classes of compact essential surfaces in M with at least one boundary component lying on S. E(M,S) can be thought as an analogy to the arc complex of a surface. We show that if M is...
Gespeichert in:
Veröffentlicht in: | Topology and its applications 2022-01, Vol.305, p.107903, Article 107903 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let M be a 3-manifold and S be a component of ∂M. We introduce a simplicial complex E(M,S), whose vertices are isotopy classes of compact essential surfaces in M with at least one boundary component lying on S. E(M,S) can be thought as an analogy to the arc complex of a surface. We show that if M is irreducible and S is compressible in M, then E(M,S) is contractible. |
---|---|
ISSN: | 0166-8641 1879-3207 |
DOI: | 10.1016/j.topol.2021.107903 |