Inverses of Borel functions

A classical result from Lusin and Souslin tells us that should a Borel function f:X→Y be a bijection, then its inverse f−1:Y→X must also be a Borel function. Let bB={f:[0,1]−Q→[0,1]−Q:fis Borel measurable}. Here, we consider the sets bB′={f∈bB:f is one-to-one}, and bH={f∈bB′:f:[0,1]−Q→[0,1]−Qis a bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Topology and its applications 2021-02, Vol.288, p.107474, Article 107474
1. Verfasser: Steele, T.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A classical result from Lusin and Souslin tells us that should a Borel function f:X→Y be a bijection, then its inverse f−1:Y→X must also be a Borel function. Let bB={f:[0,1]−Q→[0,1]−Q:fis Borel measurable}. Here, we consider the sets bB′={f∈bB:f is one-to-one}, and bH={f∈bB′:f:[0,1]−Q→[0,1]−Qis a bijection}, each endowed with the metric d(f,g)=supx∈[0,1]−Q⁡|f(x)−g(x)|, and the latter also with the metric d⁎(f,g)=d(f,g)+d(f−1,g−1). Let α
ISSN:0166-8641
1879-3207
DOI:10.1016/j.topol.2020.107474