Inverses of Borel functions
A classical result from Lusin and Souslin tells us that should a Borel function f:X→Y be a bijection, then its inverse f−1:Y→X must also be a Borel function. Let bB={f:[0,1]−Q→[0,1]−Q:fis Borel measurable}. Here, we consider the sets bB′={f∈bB:f is one-to-one}, and bH={f∈bB′:f:[0,1]−Q→[0,1]−Qis a bi...
Gespeichert in:
Veröffentlicht in: | Topology and its applications 2021-02, Vol.288, p.107474, Article 107474 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A classical result from Lusin and Souslin tells us that should a Borel function f:X→Y be a bijection, then its inverse f−1:Y→X must also be a Borel function. Let bB={f:[0,1]−Q→[0,1]−Q:fis Borel measurable}. Here, we consider the sets bB′={f∈bB:f is one-to-one}, and bH={f∈bB′:f:[0,1]−Q→[0,1]−Qis a bijection}, each endowed with the metric d(f,g)=supx∈[0,1]−Q|f(x)−g(x)|, and the latter also with the metric d⁎(f,g)=d(f,g)+d(f−1,g−1). Let α |
---|---|
ISSN: | 0166-8641 1879-3207 |
DOI: | 10.1016/j.topol.2020.107474 |