Kaestner brackets

We introduce Kaestner brackets, a generalization of biquandle brackets to the case of parity biquandles. This infinite set of quantum enhancements of the biquandle counting invariant for oriented virtual knots and links includes the classical quantum invariants, the quandle and biquandle 2-cocycle i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Topology and its applications 2020-08, Vol.282, p.107324, Article 107324
Hauptverfasser: Kobayashi, Forest, Nelson, Sam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce Kaestner brackets, a generalization of biquandle brackets to the case of parity biquandles. This infinite set of quantum enhancements of the biquandle counting invariant for oriented virtual knots and links includes the classical quantum invariants, the quandle and biquandle 2-cocycle invariants and the classical biquandle brackets as special cases, coinciding with them for oriented classical knots and links but defining generally stronger invariants for oriented virtual knots and links. We provide examples to illustrate the computation of the new invariant and to show that it is stronger than the classical biquandle bracket invariant for virtual knots.
ISSN:0166-8641
1879-3207
DOI:10.1016/j.topol.2020.107324