A map between the mod odd Steenrod and Dyer-Lashof subcoalgebras
A non-connected neither of finite type Hopf algebra F0′ is defined over Z/pZ and its hom dual turns out to be a tensor product of polynomial algebras. Certain quotient Hopf algebras include the Steenrod (Ap′) and Dyer-Lashof (R′) subalgebras generated by Pi and Qi respectively. This setting provides...
Gespeichert in:
Veröffentlicht in: | Topology and its applications 2020-04, Vol.275, p.107008, Article 107008 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A non-connected neither of finite type Hopf algebra F0′ is defined over Z/pZ and its hom dual turns out to be a tensor product of polynomial algebras. Certain quotient Hopf algebras include the Steenrod (Ap′) and Dyer-Lashof (R′) subalgebras generated by Pi and Qi respectively. This setting provides a coalgebra map between Ap′ and a direct limit of Dyer-Lashof subcoalgebras. |
---|---|
ISSN: | 0166-8641 1879-3207 |
DOI: | 10.1016/j.topol.2019.107008 |