A map between the mod odd Steenrod and Dyer-Lashof subcoalgebras

A non-connected neither of finite type Hopf algebra F0′ is defined over Z/pZ and its hom dual turns out to be a tensor product of polynomial algebras. Certain quotient Hopf algebras include the Steenrod (Ap′) and Dyer-Lashof (R′) subalgebras generated by Pi and Qi respectively. This setting provides...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Topology and its applications 2020-04, Vol.275, p.107008, Article 107008
1. Verfasser: Kechagias, Nondas E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A non-connected neither of finite type Hopf algebra F0′ is defined over Z/pZ and its hom dual turns out to be a tensor product of polynomial algebras. Certain quotient Hopf algebras include the Steenrod (Ap′) and Dyer-Lashof (R′) subalgebras generated by Pi and Qi respectively. This setting provides a coalgebra map between Ap′ and a direct limit of Dyer-Lashof subcoalgebras.
ISSN:0166-8641
1879-3207
DOI:10.1016/j.topol.2019.107008