Flow photochemical Giese reaction via silane-mediated activation of alkyl bromides
[Display omitted] Organic halides play a key role as building blocks in synthesis because of their low cost and wide availability. In recent years, halogen-atom transfer (XAT) has emerged as a reliable approach to exploit these substrates in radical processes. Herein, we report a hydroalkylation of...
Gespeichert in:
Veröffentlicht in: | Tetrahedron letters 2023-03, Vol.117, p.154380, Article 154380 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Organic halides play a key role as building blocks in synthesis because of their low cost and wide availability. In recent years, halogen-atom transfer (XAT) has emerged as a reliable approach to exploit these substrates in radical processes. Herein, we report a hydroalkylation of electron-poor olefins using alkyl bromides based on a UVA-induced silane-mediated XAT reaction. Our protocol is operationally simple, displays a broad scope and does not require a photocatalyst. Flow technology was used to reduce the reaction times and scale the process. Notably, a two-step protocol, combining the XAT protocol with a subsequent Horner-Wadsworth-Emmons reaction, has been developed to enable the allylation of C(sp3)–Br bonds. |
---|---|
ISSN: | 0040-4039 1873-3581 |
DOI: | 10.1016/j.tetlet.2023.154380 |