Deep eutectic solvents as H2-sources for Ru(II)-catalyzed transfer hydrogenation of carbonyl compounds under mild conditions

The employment of easily affordable ruthenium(II)-complexes as pre-catalysts in the transfer hydrogenation of carbonyl compounds in deep eutectic media is described for the first time. The eutectic mixture tetrabutylammonium bromide/formic acid = 1/1 (TBABr/HCOOH = 1/1) acts both as reaction medium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tetrahedron 2021-03, Vol.83, p.131997, Article 131997
Hauptverfasser: Cavallo, Marzia, Arnodo, Davide, Mannu, Alberto, Blangetti, Marco, Prandi, Cristina, Baratta, Walter, Baldino, Salvatore
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The employment of easily affordable ruthenium(II)-complexes as pre-catalysts in the transfer hydrogenation of carbonyl compounds in deep eutectic media is described for the first time. The eutectic mixture tetrabutylammonium bromide/formic acid = 1/1 (TBABr/HCOOH = 1/1) acts both as reaction medium and hydrogen source. The addition of a base is required for the process to occur. An extensive optimization of the reaction conditions has been carried out, in terms of catalyst loading, type of complexes, H2-donors, reaction temperature and time. The combination of the dimeric complex [RuCl(p-cymene)-μ-Cl]2 (0.01–0.05 eq.) and the ligand dppf (1,1′-ferrocenediyl-bis(diphenylphosphine)ferrocene) in 1/1 molar ratio has proven to be a suitable catalytic system for the reduction of several and diverse aldehydes and ketones to their corresponding alcohols under mild conditions (40–60 °C) in air, showing from moderate to excellent tolerability towards different functional groups (halogen, cyano, nitro, phenol). The reduction of imine compounds to their corresponding amine derivatives was also studied. In addition, the comparison between the results obtained in TBABr/HCOOH and in organic solvents suggests a non-innocent effect of the DES medium during the process. [Display omitted]
ISSN:0040-4020
1464-5416
DOI:10.1016/j.tet.2021.131997